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The simplest receptivity problem of linear disturbances artificially excited in a three-
dimensional boundary layer adjacent to a solid surface is studied in the framework
of the generalized triple-deck theory. In order to provide a mathematical model to
be compared with experimental data from wind-tunnel tests we consider the base
flow over a swept flat plate. Then crossflow in the near-wall region originates owing
to an almost constant pressure gradient induced from outside with a displacement
body on top. A pulsed or vibrating ribbon installed on the solid surface serves as
an external agency provoking initially weak pulsations. A periodic dependence of
the ribbon shape on a coordinate normal to the streamwise direction makes the
receptivity problem effectively two-dimensional, thereby allowing a rigorous analysis
to be carried out without additional assumptions.

The most striking result from the asymptotic theory is the discovery of streamwise
absolute instability intrinsic to a three-dimensional boundary layer at high Reynolds
numbers. However, due to limitations imposed on the receptivity problem no definite
conclusions can be made with regard to possible continued convection of disturbances
in the crossflow direction. An investigation of the dispersion-relation roots points to
the fact that wave packets of different kinds can be generated by an external source
operating in the pulse mode. Rapidly growing wave packets sweep downstream,
weaker wave packets move against the oncoming stream. Insofar as the amplitude of
all of the modulated signals increases exponentially in time and space, the excitation
process gives rise to absolutely unstable disturbances in the streamwise direction.
The computation confirms the theoretical prediction about the existence of upstream-
advancing wave packets. They can be prevented from being persistently amplified
only in a region ahead of the ribbon where nearly critical values of the Reynolds
number are attained.

The results achieved are shown to be broadly consistent with wind-tunnel measure-
ments. Hence a conjecture is made that the onset of transition is probably associated,
under some environmental conditions, with the mechanism of streamwise absolute
instability in the supercritical range of the Reynolds numbers.

1. Introduction
Instability of three-dimensional boundary layers is an area rich in contradictions

between theory and experiment. What is more, on occasion experimentalists do
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not agree with each other when treating results of wind-tunnel measurements. This
situation was building up gradually and acquired an acute form in the last few
years. A remarkable property was revealed in the first observations by Gray (1952)
in flight tests with a boundary layer on a yawed wing. He found closely spaced
stationary streaks in the direction of a local external stream at the upper reaches of the
boundary layer. This discovery was at variance with common experience coming from
two-dimensional studies, both theoretical and experimental, where the boundary-layer
instability manifests itself through self-excited Tollmien–Schlichting (TS) waves. Three
years later Gregory, Stuart & Walker (1955) provided an explanation for a stationary
mode of crossflow vortices to exist in the context of linear hydrodynamic stability
theory. Since that time the dominant role played by crossflow vortex structures was
repeatedly reported in independent investigations of the American (Saric & Yeates
1985), British (Poll 1985), Japanese (Kohama 1987), French (Arnal & Juillen 1987)
and German (Nitschke-Kowsky & Bippes 1988) groups of scientists who used facilities
with various free-stream-turbulence levels as well as different set-ups. The principle
feature intrinsic to crossflow instability was seemingly clarified by these findings. It
might be worth mentioning that china-clay visualization techniques as well as hot-
wire measurements used in experimental studies show only repeatable disturbances.
Neither of two methods can detect the presence of travelling waves excited by free-
stream turbulence in flight and wind-tunnel tests. Evidently, random disturbances do
not appear in visualization footprints, similarly they cancel out when time series are
ensemble averaged to improve the signal-to-noise ratio in hot-wire records. This seems
to be a possible reason for stationary disturbances being observed predominantly in
early investigations.

However, coexisting travelling waves were registered also; according to Poll (1985)
and Nitschke-Kowsky & Bippes (1988) they appear almost simultaneously at the same
chordwise station as where the crossflow vortices start developing. The subsequent
work of Dallman & Bieler (1987) showed that these two instability modes may be of
equal significance in the transitional process on a swept wing and the most rapidly
amplifying disturbances are even travelling waves rather than stationary vortices. This
conclusion from the linear analysis gave rise to a controversy between theory and
experiment which, until recently, was regarded to be the main one because stationary
streaks in the direction of a local external stream often dominate, as mentioned
above, the disturbance field in three-dimensional boundary layers both in flight and
wind-tunnel tests. A more detailed comparison of wind-tunnel measurements with
theoretical predictions led to a similar contradictory picture. The observed frequences
of the unsteady eigenmodes and the wavelengths of the stationary crossflow modes
were in good agreement with the linear stability analysis by Dallman & Bieler
(1987). On the other hand, the linear approach largely overestimated the amplitude
growth rates of the unsteady eigenmodes coming into play as a primary instability.
For this reason Reed & Saric (1989) have not only called into question the very
validity of hydrodynamic stability theory as applied to three-dimensional boundary-
layer flows but argued that in the general three-dimensional case, as opposed to the
two-dimensional one, the theory was apparently not well posed.

Further experimental evidence was necessary to settle the matter. This came from
two sources. First, a thorough study of the stationary crossflow vortex modes with
artificially controlled disturbances on a swept flat plate surface was undertaken
by Kachanov, Tararykin & Fedorov (1990). In principle, this technique can provide
extremely conclusive data. Secondly, the amplification of both stationary and unsteady
eigenmodes in a similar boundary layer under conditions of natural environmental
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disturbances in two wind tunnels with different levels of free-stream turbulence was
measured by Bippes, Müller & Wagner (1991). It turned out that the amplification
rates of the stationary vortex modes excited in low-turbulence wind tunnels were fairly
well predicted on the basis of linear stability analysis for both sets of independent
experiments, lending some credence to the validity of this approach. The findings
of both groups of experimentalists cleared away grave doubts about hydrodynamic
stability theory being ill posed in a finite Reynolds number range even if the velocity
field is of the general three-dimensional character. On the other hand, according to
Bippes et al. (1991) the initial growth of the unsteady modes prior to the beginning of
saturation was still essentially overestimated. They emphasized also that the dominant
mode could be switched from stationary to travelling when the free-stream turbulence
level increased. In a recent work by Deyhle & Bippes (1996) the travelling modes
were observed for the first time to be more amplified than the stationary modes as
expected from local stability analysis in Dallman & Bieler (1987).

The next step was due to Deyhle, Höhler & Bippes (1993) and Radeztsky et al.
(1993). The purpose was to obtain additional data on travelling waves developing un-
der natural environmental conditions and crossflow receptivity to micron-sized rough-
ness elements. Deyhle et al. (1993) found that the directions of propagation, phase
velocities and wavelengths of monochromatic travelling disturbances as predicted by
linear stability calculations fitted well with their experimental results. Hydrodynamic
stability theory was confirmed to be valid as applied to unsteady modes excited in
the three-dimensional boundary layer on a swept wing. As for the group velocities,
significant differences appeared in computed and observed directions, ranging up to
30–40◦. Then, cleaning the wing surface between test runs changed the spanwise lo-
cation of stationary vortices that were provoked in the natural transition experiment
by tiny roughnesses. Thus, the position from where the crossflow vortices start grow-
ing turned out to be extremely sensitive even to minor scratches and other surface
imperfections. This effect was thoroughly studied by Radeztsky et al. (1993) using
micron-sized artificial roughness elements near the attachment line on a swept wing.
In point of fact, their contribution to the archival database was designed to provide
a deeper insight into receptivity, one of the key missing ingredients in most of the
three-dimensional boundary-layer tests discussed above. The receptivity process for
stationary crossflow vortices proved to be strongly influenced by surface uneveness
from the vicinity of the attachment line. On the other hand, the same micron-sized
obstacles had no effect on travelling waves in the streamwise direction. Contrary to
Kachanov et al. (1990), Bippes et al. (1991) and Deyhle et al. (1993), in a later paper
Radeztsky, Reibert & Saric (1994) claimed that hydrodynamic stability theory failed
to correctly yield the growth rates for stationary crossflow modes to the degree that
the amplification curves did not even have the correct sign. Recent observations by
Deyhle & Bippes (1996) seem to be also at variance with this extreme standpoint.
They found the strongest receptivity of the three-dimensional boundary layer to fall
within the region of neutral stability for a spacing of roughness elements equivalent to
the most unstable stationary vortex wavelength and a certain diameter of disturbing
dots. According to Deyhle & Bippes (1996) the most amplified vortices prevailed
independent of the stimulated wavenumbers.

In order to most clearly demonstrate the state of the art in the field of three-
dimensional boundary-layer transition to turbulence, it is pertinent to present two
citations from current reviews written by leading scientists on the basis of numerous
experimental results. The statement by Kachanov (1996) summarizing the work of
the Novosibirsk team reads: ‘Everything is OK with the linear stability theory as
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applied to the swept-wing boundary layer’. At the same time Reed, Saric & Arnal
(1996) arrive at exactly the opposite conclusion: ‘Linear theory often predicts strong
growth (of stationary crossflow waves) where the amplitude is actually decaying’. Due
to controversies in experimental findings obtained by different groups of investigators
in Germany, Russia and the US the problem of the swept-wing boundary-layer
instability appears to be even more intricate than it seemed a few years before.
Therefore, it seems likely that some basic concept was missing from the consideration
of this problem.

The work on a related problem on the rotating-disk flow led to a similar contra-
dictory picture. We mention here only a few issues relevant to the above discussion
and note that from the theoretical point of view the rotating-disk boundary layer
is even more attractive because mean flow admits an explicit solution. According to
Wilkinson & Malik (1985), the stationary vortex modes originated at discrete sites
of minute randomly-distributed dust particles on the disk surface (cf. the aforemen-
tioned wind-tunnel tests by Deyhle et al. 1993 with the swept-wing flow past the
same model cleaned between successive runs). The downstream developing spiral-
vortex pattern was the result of interfering zero-frequency disturbances arising from
randomly-distributed sources. However, the key observation by Wilkinson & Malik
(1985) was on the effect of a single isolated surface imperfection. They recorded the
growth of stationary waves which rapidly spread around the disk to eventually fill
the entire circumference. The transition Reynolds number based on hot-wire evidence
of turbulent breakdown fell in a slightly lower range for the disk with a single
three-dimensional roughness element compared to the plain disk with no artificial
unevenesses. The sensitivity of the rotating-disk flow to minute surface-roughness
elements was further examined by Corke & Knasiak (1996). The periodic roughness
in the form of discrete ink dots on the disk surface focused disturbance energy into an
initially narrow band of travelling eigenmodes. Their amplitude was observed to be
in line with the predictions from linear analysis and approximately 2–3 times larger
than the stationary vortex modes following the dots.

Despite an extremely strong response of the rotating-disk boundary layer to surface
imperfections, the onset of transition, as found by various experimentalists, takes place
consistently at the critical Reynolds number of about 513 showing a small scatter of
less than 3% around an average value. What is more, the critical Reynolds number
is the same with and without artificial excitation of the base flow. This property
led Lingwood (1995) to advance a conceptually new idea that could reconcile the
contradictions inherent in both theoretical and experimental studies of the three-
dimensional boundary-layer instabilities. The lack of sensitivity to the form of the
disturbance environment was conjectured in her analysis to be indicative of an
absolutely unstable velocity field. Worthy of mention is also an earlier survey by
Huerre & Monkewitz (1990) where they exposed strong evidence signalling the
likelihood that absolute and global instabilities do arise in shear flows of various kinds.
Sources of different physical nature can trigger absolutely unstable disturbances to
grow following different scenarios but terminate in the same transition-to-turbulence
state, which is governed by nonlinear effects coming into play at the same critical
Reynolds number. In order to substantiate the concept of absolute instability, as
applied to the rotating-disk flow, Lingwood (1995) used a criterion from the work of
Briggs (1964) and Bers (1975) on plasma physics. Absolute instability was identified by
evaluating singularities in the complex wavenumber plane of the dispersion relation,
which are known as pinch-points. The crucial role in their formation turned out
to belong to two branches of the dispersion-relation roots. One of the branches
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comprises the non-zero-frequency crossflow modes whereas the other branch relates
to the spatially damped modes briefly mentioned by Mack (1985) and Balakumar &
Malik (1990). The radial component of the group-velocity vector becomes identically
zero at the pinch-point. In a subsequent study by Lingwood (1996), the radial
propagation of the trailing edge of the wave packet impulsively excited by a point
source was directly observed to tend to zero as it approached a position fixed by the
critical Reynolds number.

As is evident from what has been said above the problem of the paths to transition
in a three-dimensional boundary layer has to be put on a firm footing of a rational
mathematical analysis embracing the entire disturbance pattern. The linear stability
theory appears to offer a reliable basis, because all the data available testify that the
frequencies and wavenumbers of both stationary and unsteady eigenmodes belong
to the TS wave range. The amplitude growth rates cannot be properly estimated
using either temporal or spatial conventional approaches if the boundary layer is
absolutely unstable. Thus, the feasibility upstream of propagating wave packets is
to be anticipated when we set about solving the linear problem. The concept of
an interactive boundary layer, where the pressure variations and the instantaneous
displacement thickness are evaluated simultaneously, seems to be best suited for our
purposes. Asymptotic simplifications arising within the framework of the triple-deck
scheme were discussed by Manuilovich (1983), Stewart & Smith (1987) and Ryzhov
& Terent’ev (1991). The classical version of the triple deck turned out to possess
an inherent flaw in the form of a strong singularity making the Cauchy problem ill
posed in the linear approximation. To remove the singularity, Ryzhov & Terent’ev
(1996, 1997) generalized the triple-deck theory by accounting for the normal pressure
gradient supported by centrifugal forces due to the streamsurface warping in the
crossflow direction. A new version of the asymptotic model involves the Reynolds-
number dependence in an explicit manner.

In the work set forth below receptivity is regarded to be the key issue in resolving
the aforementioned contradictions intrinsic to the study of the three-dimensional
boundary layer on a swept wing. To this end, the extended triple-deck theory developed
by Ryzhov & Terent’ev (1996, 1997) is employed to pose the problem of disturbances
excited by a vibrating ribbon on an otherwise flat plate. The simple geometry of a solid
body in the asymptotic model is chosen to conform to a special experimental technique
which has been invented to discriminate between Görtler vortices evolving on a
concave surface and crossflow vortices peculiar to any swept-wing flow (Saric & Yeates
1985; Kachanov et al. 1990). Insofar as the surface curvature becomes identically zero
in the case of a flat plate, generation of the Görtler vortices is completely suppressed.
A periodic dependence of the ribbon shape on the spanwise coordinate makes the
receptivity problem effectively two-dimensional, thereby allowing a rigorous analysis
to be carried out along the lines described in Ryzhov & Terent’ev (1984, 1986),
without additional assumptions. In particular, we do not resort to the Briggs–Bers
criterion for determining pinch-points. Instead, computed directions of the group
velocity are at the bottom of our analysis pointing to the existence, within certain
limits, of wave packets endowed with disparate properties. The rapidly growing
wave packets sweep downstream of a disturbing source, the weaker wave packets
propagate upstream. However, the amplitude of the latter, highly modulated, signals
also increases exponentially in time and space. As a consequence, the excitation
process gives rise to absolutely unstable disturbances in the streamwise direction,
ahead of the vibrating ribbon. On the other hand, due to constraints imposed on
the receptivity problem no definite conclusions can be drawn with regard to possible
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continued convection of disturbances in the crossflow direction. The problem of a
point source should be addressed to bring to light the absolute instability in the strict
sense, i.e. simultaneously developing both in the streamwise and crossflow directions
(Huerre & Monkewitz 1990). The latter problem is attacked by Lingwood (1997) and
Taylor & Peake (1998) in recent studies that appeared when the present paper was in
the process of being reviewed. According to Lingwood (1997), disturbances from the
point source are absolutely unstable in the chordwise direction on the wing surface
but free to drift in the spanwise direction. This distinctive feature of exponentially
amplifying waves is referred to by Lingwood (1997) as ‘chordwise absolute instability’
pointing to the essence of the matter. The term ‘streamwise absolute instability’ is
used here in an analogous way. Taylor & Peake (1998) demonstrate further that
there exists a range of directions where the group-velocity vector can be resolved
into components endowed with similar properties. In projection on a direction falling
within this range the group velocity has a component vanishing to zero while the other
component remains finite. In particular, in order to fix the direction of maximum
growth close to the leading edge of a wing, they resolve the velocity profiles away
from the streamwise/crossflow direction towards the chordwise/spanwise direction.

The mechanism under discussion is peculiar to the three-dimensional boundary
layer where the direction of the wall shear differs from the direction of a streamline
in the local outer stream. In the two-dimensional boundary layer both directions
coincide to suppress the upstream motion of wave packets. The amplification of
the upstream advancing disturbance must eventually make the linear approximation
break down as time passes after launching the disturbing ribbon. Thus, the linear
theory proves to be appropriate for predicting streamwise absolute instability of a
three-dimensional boundary layer with crossflow but incapable of determining its
final state in the vicinity of a vibrator operating in the supercritical Reynolds-number
range.

Our concern is mainly with the aforementioned basic mechanism controlling the
upstream propagation of disturbances. We start in §2 with posing the receptivity
problem on a vibrating ribbon impulsively put into operation at some initial moment.
Taking account of centrifugal forces in the interaction law allows us to damp an
excessively high growth of eigenmodes with large spanwise wavenumbers. The recep-
tivity problem simplifies in a linear approximation considered in §3 on the assumption
that the vibrating ribbon amplitude is small enough. Then the Laplace–Fourier trans-
form in time and streamwise coordinate provides a solution to the linear problem
in an explicit form. With real values of both wavenumbers, all the singularities in
final expressions for desired functions are reduced to a countable set of poles in the
complex frequency plane which derive from the dispersion-relation roots. An analysis
of the dispersion curves in the whole plane presented in §4 is the cornerstone of the
work. It shows that the first dispersion curve associated with unstable oscillations
splits into two separate branches. In turn, each of the branches consists of two lobes
merging together. The lower and upper lobes which pass close to the imaginary axis
are inherent only in the three-dimensional boundary layers with crossflow and cease
to exist when the velocity field becomes two-dimensional. These lobes may be treated
as counterparts of spatially damped modes from Mack (1985), Balakumar & Malik
(1990) and Lingwood (1995) but in the complex frequency plane they represent ex-
ponentially enhancing disturbances. There is a range of the crossflow wavenumbers
where the lower lobe has a fairly strong peak in the real part of complex frequencies.
Since the value of the group velocity at the location of this peak is negative, it sets up
a wave packet advancing upstream of the vibrating ribbon. Time-dependent fields of
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the self-induced pressure are discussed in §5. We start with periodic oscillations in the
vicinity of the ribbon. For the sake of simplicity, highly modulated signals are consid-
ered on the assumption that the time is large enough. Downstream sweeping, rapidly
amplifying wave packets provoke convective instability and conventional routes to
transition. Computed results illustrate also the disturbance patterns that evolve ahead
of the vibrating ribbon depending on the value of the crossflow wavenumber. De-
spite their lower amplitudes, the upstream advancing wave packets are shown to be
dangerous disturbances since they give rise to streamwise absolute instability and
may be of importance for the transition process. Concluding remarks in §6 are of
two kinds: they demonstrate a broad consistency of the conclusions from the asymp-
totic analysis developed and indicate limitations on streamwise absolute instability
being a dominant mechanism in the path to transition under various environmental
circumstances.

2. Receptivity problem
The base motion to be considered below is a general steady three-dimensional

boundary layer with the Mach number M∞ < 1 at the outer edge. The triple deck is
chosen to describe lower-branch instabilities in the form of self-excited TS waves and
crossflow vortex modes which can be coupled together. As usual for this asymptotic
approach, we introduce a small parameter ε = R−1/8, where the local Reynolds number
R � 1 is based on a reference length L∗ associated with a particular position (x∗0, z

∗
0)

on a swept flat plate, the free-stream velocity U∗∞, density ρ∗∞ and viscosity µ∗∞ just
outside the boundary layer. Cartesian coordinates (x′, y′, z′) are non-dimensionalized
with L∗; according to a definition most commonly in use, the x′-axis is aligned with
the direction of the local external stream, y′ stands for the normal-to-wall distance and
z′ indicates the local crossflow direction (Reed & Saric 1989; Reed et al. 1996). The
corresponding non-dimensional velocities (u′, v′, w′) are based on U∗∞. Their profiles
Ux0(y2), 0, Uz0(y2), depending on a scaled distance y′ = ε4y2 within the undisturbed
boundary layer, are evaluated on the assumption that adiabatic conditions hold at
the thermally insulated solid surface. In the frame of reference adopted, the crossflow
Uz0 → 0 as y2 →∞; however both normalized wall shear stresses

τxτw = C1/2 T
∗
w

T ∗∞

dUx0(0)

dy2

, τzτw = C1/2 T
∗
w

T ∗∞

dUz0(0)

dy2

(2.1a,b)

are non-zero. The frictional intensity

τw = C1/2 T
∗
w

T ∗∞

[(
dUx0(0)

dy2

)2

+

(
dUz0(0)

dy2

)2
]1/2

(2.2)

entering (2.1a, b) varies linearly with the ratio T ∗w/T
∗
∞ of the wall temperature T ∗w to

the temperature T ∗∞ in the local external stream provided that advantage is taken of
the Chapman viscosity law with a constant denoted by C .

The present problem setting starts with the conventional triple-deck scales for
the near-wall viscous sublayer. With the time t′ non-dimensionalized with respect to
L∗/U∗∞, we introduce the following independent variables:

t′ = ε2τ−3/2
w C1/4

(
T ∗w/T

∗
∞
)
t, (2.3a)(

x′ − x′0, z′ − z′0
)

= ε3τ−5/4
w C3/8

(
T ∗w/T

∗
∞
)3/2

(x, z), (2.3b)
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y′ = ε5τ−3/4
w C5/8

(
T ∗w/T

∗
∞
)3/2

y, (2.3c)

where x′0 = x∗0/L
∗, z′0 = z∗0/L

∗ and τw comes from (2.2). The free-stream values ρ∗∞
and ρ∗∞U

∗2

∞ are used to obtain the non-dimensional density ρ′ and excess pressure p′.
Then, the scaled and normalized desired functions are defined by(

u′, w′
)

= ετ1/4
w C1/8

(
T ∗w/T

∗
∞
)1/2

(ũ, w̃) , (2.4a)

v′ = ε3τ3/4
w C3/8

(
T ∗w/T

∗
∞
)1/2

ṽ, (2.4b)

p′ = ε2τ1/2
w C1/4p̃, (2.4c)

whereas the density ρ′ =
(
T ∗w/T

∗
∞
)−1

is held constant (see for example Stewartson
1969; Messiter 1970; Smith, Sykes & Brighton 1977; Stewart & Smith 1987). On
the other hand, in most of the boundary layer the density profile R0(y2) varies with
the normal-to-wall distance y2, an obvious constraint for the thermally insulated
surface being dR0(0)/dy2 = 0. On substitution of (2.3a–c) and (2.4a–c) into the initial
Navier–Stokes equations we are left with a simpler system of the Prandtl equations

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0, (2.5a)

∂ũ

∂t
+ ũ

∂ũ

∂x
+ ṽ

∂ũ

∂y
+ w̃

∂ũ

∂z
= −∂p̃

∂x
+
∂2ũ

∂y2
, (2.5b)

∂w̃

∂t
+ ũ

∂w̃

∂x
+ ṽ

∂w̃

∂y
+ w̃

∂w̃

∂z
= −∂p̃

∂z
+
∂w̃

∂y2
, (2.5c)

for an incompressible boundary layer where both spatial derivatives ∂p̃/∂x and ∂p̃/∂z
of the self-induced pressure are to be determined simultaneously with the velocity
field.

In keeping with the traditional version of the triple deck we have ∂p̃/∂y = 0.
However, there is a distinction between an extended triple-deck approach and the
conventional theory which derives from the interaction law relating the excess pressure
p̃ to the instanteneous displacement thickness −Ã. In the context of the generalized
triple-deck theory the interaction law reads (Ryzhov & Terent’ev 1996, 1997)

p̃ = − 1

2π

∫ ∞
−∞

dξ

∫ ∞
−∞

∂2Ã(t, ξ, ζ)/∂ξ2[(
1−M2

∞
)

(x− ξ)2 + (z − ζ)2
]1/2 dζ − ε2D(zz)

∂2Ã

∂z2
, (2.6a)

ε2 = ετ5/4
w C−3/8

(
T ∗w/T

∗
∞
)−3/2

. (2.6b)

Thus, along with the leading, O(1), integral term on the right-hand side (2.6a) includes
also the main second-order term proportional to the small parameter ε. The latter term
comes from a contribution to the normal pressure gradient from centrifugal forces
due to the streamsurface curvature ∂2Ã/∂z2 in the spanwise direction. A coefficient

D(zz) =

∫ ∞
−∞
R0(y2)U

2
z0(y2)dy2 (2.7)

can be identified with the spanwise momentum thickness of a three-dimensional
boundary layer; it becomes zero in the absence of crossflow Uz0. Without the second-
order term incorporated into the interaction law (2.6a, b), (2.7), the amplitude growth
rate of crossflow eigenmodes proves to increase without bound in the limit as values
of both wavenumbers in the (x, z)-plane tend to infinity along certain curves. Because
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of this the Cauchy problem is ill posed for the linearized Prandtl equations (Ryzhov
& Terent’ev 1991). Accounting for the second-order term in (2.6a) allows us to damp
out the aforementioned unrealistic amplification of self-excited disturbances with a
consequence that the Cauchy problem becomes regular in a linear approximation. In
the framework of the generalized approach under discussion the triple-deck scheme
as a whole is preserved intact and simplifies in limiting cases (Ryzhov & Terent’ev
1996, 1997). In particular, at the upper reaches of the near-wall viscous sublayer we
have

ũ− τxy → τxÃ, w̃ − τzy → τzÃ as y →∞ (2.8a,b)

with the displacement thickness −Ã arising from viscous–inviscid interaction.
Let us consider a simple receptivity problem where disturbances are supposed to be

induced by a vibrating ribbon brought into operation in a pulse mode. The problem
seems to be best suited to elucidating the strong response of the three-dimensional
boundary layer to an excitation often in use by experimentalists to control the input
conditions. They consider incorporating the receptivity into stability analysis as the
major issue for future work (Deyhle & Bippes 1996; Reed et al. 1996). The fomulation
with a vibrating ribbon allows us to trace the growth of wave packets generated
when triggering an external source and the evolution of time-periodic oscillations
continuously fed by the subsequent monochromatic motion of the same source. The
periodic oscillations occupy the space between the ribbon and wave packets and can
extend in both directions, downstream as well as upstream. Note that impulsively
excited wave packets have the spectrum of frequencies, which necessarily contains the
most amplified linear mode, whereas in general the harmonic excitation is not chosen
to be the most amplified. For this reason, the wave packets may be envisioned as
disturbances vigorously building up in time and space.

In the analysis below we concentrate on wave systems emitted during the initial
pulse motion of the ribbon. To attain this goal, the ribbon is specified by

y = yw =

{
δ sin(ω0t)f(x) cos(m0z), t > 0
0, t < 0

(2.9)

with a function f(x) being effectively non-zero only within a finite interval; f will be
defined more precisely below. The harmonic dependence of yw on z adopted serves to
simulate experimental set-ups exploiting artificial perturbations in wind-tunnel tests
(Saric & Yeates 1985; Kachanov 1996; Deyhle & Bippes 1996). By no means does
the mathematical model at hand embrace the free-stream excitation of an in-flight
boundary layer which is a more complicated process. A value of the wavenumber
m0 directly relates to the crossflow spacing of artificial devices provoking alternating
peaks and drops of the ribbon shape in the same direction. The disturbing agency
amplitude is fixed by δ; in the linear approximation to be developed in the following
analysis we assume δ � 1.

The boundary conditions at the moving surface are

ũ = w̃ = 0, ṽ =
∂yw

∂t
at y = yw (2.10a,b)

where yw is given in (2.9). In the receptivity problem posed, it is natural to choose
initial data in the form

ũ = w̃ = 0 at t = 0 (2.11)

in order to observe the birth and development of various types of disturbances intro-
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duced in the three-dimensional boundary layer by the switching on and subsequent
monochromatic motion of a narrow ribbon stretching in the crossflow direction.

It is pertinent to emphasize a distinction between the receptivity problem un-
der consideration and that analysed by Lingwood (1995) in connection with the
rotating-disk flow. The ribbon in (2.9) extends in the crossflow direction, therefore
the group-velocity vector is parallel to the direction of the local outer stream. This
formulation may be considered as characteristic of the swept-wing boundary layer.
On the other hand, the initial perturbation in Lingwood (1995) is provided by an im-
pulsive circumferential forcing in the form of the Dirac delta function. Evidently, the
forcing is aligned with the direction of the oncoming mainflow in a frame of reference
rotating with a disk and the group velocity of an excited wave packet is in the radial
direction of crossflow. The trailing edge of the wave packet stops moving outwards at
a position where the group velocity becomes zero. The rotating-disk boundary-layer
breaks down owing to the absolute instabilty developing in the crossflow direction. On
the other hand, the receptivity problem in (2.9), (2.10a, b) is designed to demonstrate
the wave patterns evolving due to distinctive instabilities in the streamwise motion
of the swept-wing boundary layer. Thus, the receptivity problem posed is indicative
only of the streamwise absolute instability. In order to reveal the absolute instability
in the strict sense, i.e. in the streamwise and crossflow directions simultaneously,
it is necessary to attack the problem of launching a disturbing source where the
harmonic dependence of yw on z is replaced by a function being non-zero within a
finite interval −z0 < z < z0. In this latter case disturbances are free to convect in the
crossflow direction making the large-time three-dimensional impulse response quite
dissimilar to the effectively two-dimensional impulse response which takes place with
the excitation given in (2.9), (2.10a, b).

3. Linear approximation
The boundary-value problem at hand is essentially nonlinear, therefore it allows us

in principle to study wave motion of finite amplitude. However, usually the boundary-
layer receptivity means a linear process which is brought about by a weak external
source with δ → 0. Setting

(ũ− τxy, ṽ, w̃ − τzy, p̃, Ã) = δ(τxu, v, τzw, p, A) (3.1)

let us simplify the Prandtl equations (2.5a–c) as well as the boundary conditions
(2.8a, b), (2.9), (2.10a, b) and initial data (2.11). According to Ryzhov & Terent’ev
(1996, 1997) the resulting linear problem is well posed.

We begin with the no-slip conditions (2.10a, b). With allowance made for (2.9) and
(3.1) they reduce to

(u, v, w) = [− sin(ω0t), ω0 cos(ω0t),− sin(ω0t)] f(x)Re
(
eim0z

)
at y = 0, t > 0. (3.2)

In line with (3.2) a solution is sought in the form

(u, v, w, p, A) = Re
[
(uc, vc, wc, pc, Ac)e

im0z
]
. (3.3)

Here the desired complex functions uc, vc, wc, pc, Ac are transformed into the Laplace
integral in t and the Fourier integral in x by means of[

ūc(ω, k, y), v̄c(ω, k, y), w̄c(ω, k, y), p̄c(ω, k), Āc(ω, k)
]

=

∫ ∞
−∞

dx

∫ ∞
0

e−(ωt+ikx) [uc(t, x, y), vc(t, x, y), wc(t, x, y), pc(t, x), Ac(t, x)] dt. (3.4)
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Substitution of (3.3) and (3.4) into the system of linearized Prandtl equations results
in a set of homogeneous ordinary differential equations

dv̄c
dy

= −i (kτxūc + m0τzw̄c) , (3.5a)

d2ūc

dy2
= [ω + i (kτx + m0τz) y] ūc + v̄c +

ik

τx
p̄c, (3.5b)

d2w̄c

dy2
= [ω + i (kτx + m0τz) y] w̄c + v̄c +

im0

τz
p̄c, (3.5c)

for the function-images ūc, v̄c, w̄c, p̄c, Āc insofar as the initial data (2.11) for ūc and
w̄c are zero. The limiting conditions (2.8a, b) at infinity lead to

ūc → Āc, w̄c → Āc as y →∞. (3.6a,b)

A simple relation

p̄c =
k2Āc[(

1−M2
∞
)
k2 + m2

0

]1/2 + ε2m
2
0D(zz)Āc (3.7)

between p̄c entering (3.5b, c) and Āc from the right-hand sides of (3.6a, b) comes from
the interaction law (2.6a, b) with D(zz) given in (2.7). The no-slip conditions (3.2)
become

(ūc, v̄c, w̄c) = (−1, ω,−1)
ω0

ω2 + ω2
0

f̄(k) at y = 0, (3.8)

where f̄(k) is a Fourier transform of the vibrator shape f(x).
Let us define a reduced wavenumber K = kτx + m0τz and introduce a new desired

function F = kτxūc + m0τzw̄c. It satisfies an equation

d2F

dy2
− (ω + iKy)F = Kv̄c + i(k2 + m2

0)p̄c (3.9)

following from (3.5b, c). Being coupled together, (3.5a) and (3.9) constitute a complete
set of equations for the two functions F and v̄c. Upon differentiating (3.9) and
eliminating dv̄c/dy between the resulting expression and (3.5a) we obtain

d3F

dy3
− (ω + iKy)

dF

dy
= 0. (3.10)

Precisely the same equation controls the propagation of TS waves in a Blasius
boundary layer with parameters independent of the spanwise coordinate z. This
property is the essense of a transformation by Squire (1933) which remains valid
asymptotically, as ε→ 0, even if a steady three-dimensional motion of a compressible
fluid involves crossflow in the local spanwise direction. The limiting condition

F → KĀc as y →∞ (3.11)

is a linear combination of (3.6a) and (3.6b). Two constraints to be imposed on F at
the moving solid surface are derivable from (3.8) and (3.9); they can be written down
as

F = −K ω0

ω2 + ω2
0

f̄,
d2F

dy2
= i(k2 + m2

0)p̄c at y = 0. (3.12a,b)
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The standard technique (see for example Ryzhov & Terent’ev 1984, 1986) which
depends upon introducing a new independent variable

Y = Ω + i1/3K1/3y, Ω = i−2/3ωK−2/3 (3.13a,b)

serves to solve the boundary-value problem given in (3.10), (3.11) and (3.12a, b). It
should be mentioned that a cut along the positive imaginary semi-axis is drawn in
the complex K-plane which separates a single-valued branch of the function K1/3 by
means of −3π/2 < arg(K) < π/2 with a consequence that −π/3 6 arg(Y ) 6 π/3 as
y →∞. After some algebra we arrive at an expression

F = − ω0

ω2 + ω2
0

f̄(k)

×
{
K +

i1/3(k2 + m2
0)

K2/3I(Ω)

k2[(1−M2
∞)k2 + m2

0]
−1/2 + ε2m

2
0D(zz)

Φ(Ω)− Q(k, m0;M∞, ε2D(zz); τx, τz)

∫ Y

Ω

Ai(Y )dY

}
, (3.14)

where Ai(Y ) designates the Airy function, Φ(Ω) and I(Ω) are defined through its first
derivative and improper integral by

Φ(Ω) =
d Ai(Ω)

dY
[I(Ω)]−1 , I(Ω) =

∫ ∞
Ω

Ai(Y )dY , (3.15a,b)

the quantity Q(k, m0;M∞, ε2D(zz); τx, τz) stands for

Q(k, m0;M∞, ε2D(zz); τx, τz) = i1/3(k2 + m2
0)K

−5/3

×
{
k2[(1−M2

∞)k2 + m2
0]
−1/2 + ε2m

2
0D(zz)

}
(3.16)

and the square root of (1−M2
∞)k2 + m2

0 is meant to be positive for all real values of
k and m0. The corresponding expression

p̄c = − ω0

ω2 + ω2
0

f̄(k)
Φ(Ω)

{
k2[(1−M2

∞)k2 + m2
0]
−1/2 + ε2m

2
0D(zz)

}
Φ(Ω)− Q(k, m0;M∞, ε2D(zz); τx, τz)

(3.17)

for the Laplace–Fourier transform of pressure variations arises upon substitution of
(3.11) into (3.7) with F expressed by means of (3.14). The normal-to-wall velocity com-
ponent v̄c stems from (3.5a) cast in the form dv̄c/dy = −iF . Thus, F may be regarded
as an asymptotic representation, as R →∞, of the normal Orr–Sommerfeld mode.

However, in order to evaluate the other two velocity components in a plane
parallel to the wall we need an auxiliary function G = −τxτz(ūc − w̄c) determined by
the inhomogeneous Airy equation

d2G

dY 2
− Y G =

i1/3(kτz − m0τx)p̄c
K2/3

subject to homogeneous boundary conditions

G = 0 at Y = Ω and G→ 0 as Y →∞,

which are obtainable from (3.6a, b) and (3.8), respectively. A solution

G =
i1/3π(kτz − m0τx)p̄c

K2/3

Ai(Ω)Gi(Y )−Gi(Ω)Ai(Y )

Ai(Ω)
(3.18)

to the boundary-value problem posed involves a new function Gi(Y ) from the
Handbook by Abramowitz & Stegun (1964). It satisfies the inhomogeneous Airy
equation with a constant −1/π on the right-hand side and the initial conditions
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Gi(0) = 3−1/2Ai(0), d Gi(0)/dy = −3−1/2d Ai(0)/dY . Since, in view of (3.13a), −π/3 6
arg(Y ) 6 π/3 as Y → ∞ the asymptotic decay of Gi(Y ) obeys an algebraic law
Gi(Y ) ∼ π−1Y −1 + . . . rather than being exponential. Hence we deduce

G→ − i1/3(kτz − m0τx)p̄c
K2/3

(
1

Y
+

2

Y 4
+ . . .

)
as Y →∞

keeping one more term in the asymptotic expansion for Gi(Y ). With G specified
through (3.18), the Laplace–Fourier transforms of horizontal velocity components
become

ūc =
F + m0G/τx

K
, w̄c =

F − kG/τz
K

. (3.19a,b)

Thus, G may be treated as a Squire mode. It is known (see for example Benney &
Gustavsson 1981; Criminale & Drazin 1990) that the resonance interaction of the
normal Orr–Sommerfeld modes with the Squire mode can occur at the early transient
stage and give rise to an enormous increase in the disturbance energy before its
eventual exponential damping comes in the subcritical range of parameters involved.
The period of algebraic growth presumably plays an important part in provoking
laminar–turbulent transition; however this issue will not be pursued in the present
study. Therefore, in what follows we confine ourselves to the analysis and calculation
of the pressure variations using an explicit expression

pc =
ω0i

4π2

∫ ∞
−∞

dk eikxf̄(k)
{
k2[(1−M2

∞)k2 + m2
0]
−1/2 + ε2m

2
0D(zz)

}
×
∫ `+i∞

`−i∞
dω eωtΦ(Ω)(ω2 + ω2

0)−1[Φ(Ω)− Q(k, m0;M∞, ε2D(zz); τx, τz)]
−1 (3.20)

for the inverse Laplace–Fourier transform. For a definition of ` in the limits of the
second improper integral on the right-hand side of (3.20) see, for example, Korn &
Korn (1961). Taking advantage of the fact that with real k all the singularities in
the complex ω-plane are reduced to a countable set of poles, it seems advisable to
expand the inverse Laplace transform into series in residues of the integrand at these
points. We emphasize that the complex k-plane is far more intricate and contains
branch-point singularities in addition to a countable set of poles. As usual, branch
points entail the existence of a continuous spectrum of eigen-values coming from
their respective brunch-cuts.

4. Dispersion-relation roots
Thus, all the zeros of the denominator in an expression for the integrand are to be

traced first of all in the complex ω-plane with k running through an infinite interval
−∞ < k < ∞. Two fixed zeros

ω(±) = ± iω0 (4.1)

are obvious. The other zeros are determined by a dispersion relation

Φ(Ω) = Q(k, m0;M∞, ε2D(zz); τx, τz). (4.2)

Here Φ(Ω), as defined in (3.15a, b), is a standard function inherent in the triple-deck
approach to hydrodynamic stability theory (see for example Ryzhov & Terent’ev
1986, 1991, 1997). The dependence of Q on k and five parameters m0;M∞, ε2D(zz);
τx,τz comes from (3.16). We put M∞ = 0.2 to deal with the typical low-Mach-
number regime of a compressible fluid and choose ω0 = 3, τx = 2

√
2/3, τz = 1/3
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as characteristic values for a general three-dimensional boundary layer. The product
ε2D(zz) is assumed to take a value ε2D(zz) = 0.01. The crossflow wavenumber m0 is
allowed to vary within an interval 0 6 m0 6 9. With the parameter range specified in
this way, we cover all the essential properties of the streamwise TS modes coupled
with crossflow modes. It is just this coupling which gives rise to a specific eigenmode
responsible for streamwise absolute instability. However, one needs to bear in mind
that the occurrence of critical layers is fully ignored within the framework of the
triple-deck scheme under consideration. No indication for the critical layers to be
necessarily introduced into the disturbance pattern comes from the analysis of the
self-induced pressure as defined in (3.17) and (3.20) because ∂p̃/∂y = 0 in equations
governing the fluid motion. On the other hand, the Laplace–Fourier transforms of the
horizontal velocities ūc and w̄c given by (3.19a, b) where F and G are to be evaluated
through (3.14) and (3.18), respectively, point to a singularity arising in the limit, as
K → 0. This singularity causes a critical layer to be formed in the proximity of the
wall. Critical layers of the other kind appear also at a finite distance from the wall
as a consequence of the fact that the velocity profile kUx0(y2) + m0Uz0(y2) in the
direction of the normal mode propagation can vanish at some point y2 = y2c inside
the main deck if k < 0. If, in addition, the velocity profile has an inflection point with
d2 [kUx0(y2) + m0Uz0(y2)] /dy

2
2 = 0 at y2 = y2c, the mechanism of instability becomes

essentially inviscid. It was first examined in the pioneering study by Gregory et al.
(1955) in connection with the stationary vortex pattern on a rotating disk. An even
more complicated wave system involves two interacting critical layers (see for example
Gajjar, Arebi & Sibanda 1996). For the sake of simplicity we leave aside an in-depth
analysis of the velocity fields within the critical layers peculiar to all of these four
cases since it does not affect our conclusions of conceptual importance.

4.1. Two-dimensional disturbances with m0 = 0

We begin with the particular case of disturbances introduced by a ribbon the shape
of which does not change in the crossflow direction. To this end, m0 is assumed to be
zero with a consequence that K = kτx and F = kτxūc. The three-dimensional character
of the initial boundary layer with crossflow included proves to be of no significance
in these circumstances and the wave system becomes effectively two-dimensional.
Accordingly, the expression (3.16) for Q reduces to

Q = i1/3τ−5/3
x (1−M2

∞)−1/2k1/3|k| (4.3)

and results given in Ryzhov & Terent’ev (1984, 1986) and Smith (1989) are directly
applicable to the analysis of the dispersion relation, with M∞ and τx ruled out
by means of an additional affine transformation. In the auxiliary complex Ω-plane
all the roots of this relation spring up from the points Ωdj fixed by an equation
d Ai(Ωdj)/dy = 0 ensuing from (4.2) and (4.3) for waves uniformly stretching in the
crossflow direction in the limit k = 0. Thus, the dispersion-relation roots generating
the dispersion curves Ωj(k) can be arranged in increasing order of magnitude of the
successive negative numbers Ωdj, j = 1, 2, 3, . . . .

Using Ωj(k) we can easily obtain the dispersion curves ωj(k) in the complex ω-
plane since ω = i2/3Ω k2/3 on the strength of (3.13b) with m0 = 0 and τx eliminated
by means of the aforementioned affine transformation. Figure 1 shows five of them
labelled 1 to 5; it is worth noting that the curves here do not depend on the value
of ε2D(zz). The dispersion curves marked by odd subscripts are drawn as solid lines,
the dispersion curves bearing even subscripts are depicted by dotted lines. Each
curve consists of two branches located symmetrically about the real axis. Negative
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Figure 1. Complex frequency plane for the particular case of two-dimensional disturbances.

values of k form a basis for calculating the upper branches of ω1(k), ω3(k), ω5(k), . . . ,
and the lower branches of ω2(k), ω4(k), . . . , on the other hand, positive values of k
give rise to the lower branches of ω1(k), ω3(k), ω5(k), . . . and the upper branches of
ω2(k), ω4(k), . . . . All the dispersion curves ωj(k) stem from the origin ω = 0, which
corresponds to k = 0, and initially are in the half-plane Re(ω) < 0. Then both
branches of ω1(k) make a turn and enter the half-plane Re(ω) > 0 upon crossing
the imaginary axis at the points ω = ±ω∗i = ±2.298i when k reaches the critical
values k = ∓k∗ = ∓1.0005, respectively. These points give neutral oscillations with the
amplitude remaining constant in time and space. The two segments of ω1(k) from the
half-plane Re(ω) < 0 and the other dispersion curves ωj(k) with j > 2 are associated
with stable TS eigenmodes. Both branches of ω1(k) with k∗ < |k| < ∞ positioned in
the half-plane Re(ω) > 0 are responsible for unstable TS eigenmodes. The global and
local maxima, labelled g and ` respectively, with a local positive minimum of Re(ω1)
in between feature each of the branches (Ryzhov & Terent’ev 1984, 1986; Smith 1989).
The global maximum attained by Re(ω1) is at the heart of the strong wave-packet
formation; the second, barely discernible local maximum of Re(ω1) produces a much
weaker subpacket. The modulated oscillatory signals sweep downstream with the
group velocities V ∗g = −d Im ω1(∓k∗g)/dk = 4.49 and V ∗` = −d Im ω1(∓k∗`)/dk = 8.63,
respectively, where k∗g = 2.716 and k∗` = 4.346. Of these two wave packets, the slower
one is the most violently developing disturbance propagating in a boundary layer in a
linear stage (Ryzhov & Terent’ev 1984, 1986). It is pertinent to note that there exists
no wave packet which is capable of moving upstream if m0 = 0.

4.2. Distinctive features of the dispersion curves for three-dimensional waves

The ω-plane drastically changes for values of m0 6= 0 on account of alterations in the
form of the first dispersion curve. It is worth mentioning that the dispersion-relation
roots Ωj now become functions of the streamwise wavenumber k as well as additional
parameters m0; M∞, ε2D(zz); τx, τz , the first four of which are actually independent in
view of the equality τ2

x+τ2
z = 1 connecting the wall-shear-stress components τx and τz .

In what follows, all these parameters are for brevity omitted from the right-hand sides
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of the expressions Ω = Ωj(k, m0;M∞, ε2D(zz); τx, τz) and the corresponding definitions
ωj = ωj(k, m0;M∞, ε2D(zz); τx, τz) of eigen-frequencies for any j = 1, 2, . . . .

In order to gain insight into major distinctions of the general case under consider-
ation let us write down an expression

ω1 ∼ −eiπ/2 k
2 + m2

0

K

{
k2[(

1−M2
∞
)
k2 + m2

0

]1/2 + ε2m
2
0D(zz)

}

+e−iπ/4 K3/2

(k2 + m2
0)

1/2

{
k2[(

1−M2
∞
)
k2 + m2

0

]1/2 + ε2m
2
0D(zz)

}−1/2

+ . . . (4.4)

determining the asymptotic behaviour of ω1(k), as either k → ±∞ or K → ±0,
k → klim = −m0τz/τx. In the former limit, as k → ±∞, we have

Re(ω1)→
√

2

2
τ3/2
x

(
1−M2

∞
)1/4

> 0 (4.5)

no matter what is the value of m0 in (4.4). Thus, Re(ω1) tends to the same positive
constant as it does in the particular case m0 = 0. However in the latter limit Re(ω1)
vanishes together with K → ±0 according to

Re(ω1)→
√

2

2
|K|3/2

(
k2
lim + m2

0

)−1/2

{
k2
lim[(

1−M2
∞
)
k2
lim + m2

0

]1/2 + ε2m
2
0D(zz)

}−1/2

. (4.6)

This implies, in effect, that each of the branches of the first dispersion curve has two
different asymptotes stretching to infinity in the lower and the upper half-planes of
the complex ω-plane. Both asymptotes are parallel to the imaginary axis and spaced

(
√

2/2)τ
3/2
x

(
1−M2

∞
)1/2

apart.
As a consequence, another distinction in the shape of ω1(k) arises in the vicinity

of the origin. A typical example of a domain centred about the origin is drawn in
figure 2 on an enlarged scale for m0 as small as 0.1. The two branches of the first
dispersion curve are seen to become separated, and what is more neither of them
meets the real axis. A small positive peak of Re(ω1), labelled d, occurs on each of
the branches before they approach the imaginary axis as K → ±0. These peaks grow
in magnitude with m0 exceeding 0.1 and become responsible for the formation of
additional weak wave packets as compared to the particular case m0 = 0 where they
are lacking.† With the above results at hand, the behaviour of ω1(k) for small m0

in the whole complex ω-plane can be roughly deliniated in the following way. The
lower branch, starting from Im(ω1)→ −∞ and the asymptotic value of Re(ω1) given
in (4.5) as k → ∞, first climbs steeply up, then makes a turn not far from the origin
and goes downwards to terminate in (4.6) with K → 0. The upper branch, springing
up symmetrically from Im(ω1) → ∞ and the same asymptotic value (4.5) of Re(ω1)
as k → −∞, stops short of reaching the real axis; upon making a turn it proceeds
upwards to end in (4.6) with K → −0. Thus, each branch consists of two segments
connected in a single curve as shown in figure 2. The left-hand segments bearing weak
positive peaks of Re(ω1) are the salient property of the general case m0 6= 0. It is just

† The computation points also to the existence of two more tiny peaks of Re(ω1), one on the
lower branch and the other on the upper branch. Both tiny peaks are barely discernible in figure 2
due to insufficient resolution and play no part in the analysis below.
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Figure 2. The first dispersion curve in the complex frequency plane for m0 = 0.1. Two pairs of
segments make up separate branches above and below the real axis.

these segments of the first dispersion curve that lead to the excitation of a special
mode of disturbances peculiar solely to three-dimensional boundary layers.†

In more detail the form of the right-hand segments for small m0 can be found from
the computation. With m0 6 0.1, the right-hand segments are almost mirror images
of each other and bear a certain resemblance to both branches of the first dispersion
curve in the particular case m0 = 0 of figure 1. The global and local maxima of Re(ω1)
which feature in each of the right-hand segments are similar to the corresponding
extrema labelled g and ` in that figure. However the resemblance is impaired in the
vicinity of the origin. Unlike the particular case m0 = 0, each local negative minimum
of Re(ω1) is situated between two points on the imaginary axis giving rise to neutral
oscillations with different frequencies. Since the points, where the lower and upper
branches of ω1(k) intersect the imaginary axis, are placed asymmetrically about the
real axis there exist four different values of the neutral frequency. Figure 3 is a plot
of all neutral frequencies ω∗ = ω∗(m0∗) against the corresponding values m0 = m0∗
of the crossflow wavenumber. Damped eigenmodes fall within two shaded domains.
Neutral oscillations cease to exist first on the upper branch of the first dispersion
curve and then on the lower branch.

The dispersion curves ωj(k) with j = 2, 3, . . . , do not suffer similar drastic distor-
tions. In the auxiliary complex Ω-plane the corresponding dispersion-relation roots
originate, as before, from the points Ωdj specified through d Ai(Ωdj)/dY = 0. These

trajectories have their other ends at the points Ω(±)
Ij fixed by means of the complex-

conjugate roots of an equation I(Ω(±)
Ij ) = 0 where an improper integral I(Ω) is defined

in (3.15b). The points Ω
(±)
Ij are located in a finite part of the Ω-plane. Hence it

† An analogous spatially damped mode has been briefly mentioned by Mack (1985) and Bal-
akumar & Malik (1990) in connection with rotating-disk flow and exploited by Lingwood (1995)
to prove the absolutely unstable character of this motion. The spatially damped mode persists in
the framework of an inviscid approach.



128 O. S. Ryzhov and E. D. Terent’ev

3

2

1

0

–1

–2

–3

–4
0 1 2 3 4

ω*

m0*

Figure 3. Neutral oscillation frequency as a function of the spanwise wavenumber. Two critical

values m0 = m
(1)
0∗ = 1.8 and m0 = m

(2)
0∗ = 3.5 are obtainable with ω0 = 3.

follows that

Φ→
d Ai

(
Ω

(±)
Ij

)
/dY

Ai
(
Ω

(±)
Ij

)(
Ω

(±)
Ij − Ω

) as Ω → Ω
(±)
Ij ,

and we arrive at an asymptotic expansion

ωj ∼ eiπ/3K2/3Ω
(±)
Ij

− eiπ/6
K7/3d Ai

(
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∞
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0D(zz)

}−1

+ . . . (4.7)

which holds in both limiting cases as k → ±∞ or K → ±0, k → klim = −m0τz/τx.
When passing to either of these limits, the second term on the right-hand side of (4.7)
gets much smaller in magnitude than the first term and may be disregarded. As a
result, the dispersion curves ωj(k) with j = 2, 3, . . . , preserve their topological forms
portrayed in figure 1 for m0 = 0.

The location of these dispersion curves in the left half-plane of the complex ω-plane
is rigorously justified using a line of reasoning developed in the general analysis by
Ryzhov & Terent’ev (1986, 1991) for ε2 = 0. With both wavenumbers taking arbitrary
real values, the auxiliary complex variable Ω has the aforementioned trajectories
arising from the points Ωdj . Variations of Ω within any particular trajectory depending
only on j = 2, 3, . . . , are allowed in both directions. The change of the direction marks
the occurrence of a turning point leading to non-monotomic behaviour of Ω. As
applied to the problem under consideration the situation also simplifies because the
spanwise wavenumber m0 is kept constant. Let now ε2 be non-zero. In view of (3.16),
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an additional term proportional to ε2m
2
0D(zz) enters the right-hand side Q of the

dispersion relation (4.2). Although the magnitude of Q changes, its argument remains
intact. As we may conclude herefrom, the trajectories in the auxiliary complex Ω-
plane preserve their forms notwithstanding the fact that the turning points become
shifted to new positions. Since ω = i2/3ΩK2/3 if m0 6= 0, all the dispersion curves ωj(k)
with j = 2, 3, . . . , lie in the left half-plane giving rise to stable eigenmodes. The first
dispersion curve solely brings about unstable oscillations. They are induced by those
portions of the curve which are positioned in the right half-plane of the complex
ω-plane and incorporate the aforementioned left segments with two additional small
positive peaks of Re(ω1).

4.3. Dependence on the spanwise wavenumber

Distortions in the shape of ω1(k) which have surfaced already in figure 2 get much
larger with values of m0 continuously increasing from m0 = 0.1. There are four
distinctive ranges of the crossflow wavenumber specified by the following inequalities:
I, 0 < m0 < 2; II, 2 < m0 < 5; III, 5 < m0 < 7; IV, m0 > 7.

Figure 4 shown for m0 = 1 presents the complex ω-plane typical of the first
range. Asymmetry in the form of two branches of ω1(k) and their separation become
clear cut even on a smaller scale. Nevertheless, as with values of m0 only slightly
greater than zero, the lower branch of ω1(k) where K > 0 has a short portion with
a local negative minimum of Re(ω1) in the left half-plane of the complex ω-plane.
Oscillations associated with this portion are stable except for the end points which
lie on the imaginary axis and give rise to neutral disturbances with two different
frequencies. If the motion along the right-hand segment of ω1(k) starts from the point
at infinity, we pass through a local maximum, then a local positive minimum and
finally the global maximum of Re(ω1) before reaching the first neutral point with the
larger frequency of eigen-oscillations. As in figure 1, the global and local maxima are
labelled g and `, respectively; similar notations are used below. The magnitude of the
global maximum grows with m0 increasing in the first range. A small positive peak of
Re(ω1) of the type d already known from figure 2 rapidly develops behind the second
neutral point with a lesser value of the eigen-frequency when we proceed downwards
along the left-hand segment of ω1(k) to the point Im(ω1) → −∞, Re(ω1) → 0 as
K → 0.† On the other hand, the upper branch of ω1(k) where K → 0 lies entirely in
the right half-plane of the complex ω-plane. In accord with figure 3, there is no neutral
point on this branch, therefore it contributes only to unstable oscillations. However
the magnitude of the global maximum of Re(ω1) on the right-hand segment of the
upper branch strongly decreases in the first range with m0 increasing and becomes
half the size of the corresponding global maximum attained on the same segment
of the lower branch. As a consequence, the amplitude of periodic wavetrains and
especially modulated wave packets related to the upper branch of ω1(k) must be far
smaller than analogous lower-branch disturbances. One more distinction between the
two branches of the first dispersion curve is in the fact that the aforementioned small
positive peak of Re(ω1) on the left-hand segment of the lower branch disappears
from the left-hand segment of the upper branch.

Figure 5 demonstrates the evolution of the tendencies described above. A value of
m0 = 3 chosen here can be considered as a characteristic one for the second range
2 < m0 < 5 of the crossflow wavenumbers. There still exists a portion of the lower

† One more tiny positive peak of Re(ω1) can be revealed in the left-hand segment using an
enlarged scale.
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Figure 4. The first dispersion curve in the complex frequency plane for m0 = 1. Two branches are
seen to become dissimilar.

branch of ω1(k) which is situtated in the left half-plane of the complex ω-plane with
its end points on the imaginary axis. Thus, neutral oscillations persist and can have
two different frequencies. However, this portion becomes shorter and bears a weaker
local negative minimum of Re(ω1). On the other hand, the magnitude of the global
and local maxima of Re(ω1) on the right-hand segment of the lower branch continues
to grow with m0 increasing in the second range. The initially small positive peak d of
Re(ω1), occurring behind the second neutral point when we move downwards along
the left-hand segment of the lower branch to the point Im(ω1) → −∞, Re(ω1) → 0
as K → 0, strongly amplifies as well and amounts to up to one third of the global
maximum and exceeds one half of the local maximum despite the growing magnitude
of these latter.† Both the global and local maxima fade away from the right-hand
segment of the upper branch owing to monotonic variations of Re(ω1) provided that
K < 0. The two branches of the first dispersion curve are found to be dissimilar.

A value m0 = 5 is taken in figure 6 to illustrate the end of the second range and
the beginning of the third range extending up to m0 = 7. Referring to this figure,
dissimilarities between the two branches making up ω1(k) are somewhat smoothed
out owing to the fact that the lower branch continues also in the right half-plane of
the complex ω-plane without touching the imaginary axis. Thus, both branches of
the first dispersion curve induce unstable oscillations, whereas neutral disturbances
cease to be a part of the perturbed motion. The global maximum of Re(ω1) on the
right-hand segment of the lower branch is at its highest just before the crossflow
wavenumber attains a value m0 = 5. Hence the magnitude of the global maximum
starts declining with m0 increasing in the third range. On the other hand, the local
maximum of Re(ω1) is highest here. Two kinks barely discernible on the left-hand
segment of the lower branch mark the location of additional tiny local maxima. One
of them is nothing but a degenerate form of the small peak d of Re(ω1) which starts
to rapidly develop in the first range of m0 (figure 4) and becomes fairly strong in

† A scarcely perceptible kink is in fact an indication to the existence of another tiny peak of
Re(ω1).
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Figure 5. The first dispersion curve in the complex frequency plane for m0 = 3. A strong positive
peak of Re(ω1) develops on the left-hand segment of the lower branch.
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Figure 6. The first dispersion curve in the complex frequency plane for m0 = 5. A positive peak of
Re(ω1) becomes a tiny kink on the left-hand segment of the lower branch.

the second range (figure 5). The upper branch of the first dispersion curve preserves
basically the same shape as that portrayed in figure 5.

Figure 7 drawn for m0 = 7 illustrates the end of the third range and the beginning
of the fourth range extending beyond this value of the crossflow wavenumber. The
characteristic property of the first dispersion curve under consideration is that the
magnitude of the global maximum of Re(ω1) on the right-hand segment of its
lower branch significantly falls whereas the neighbouring local maximum remains
approximately at the same level as in figure 6. The two extrema become closer to each
other. As figure 8 demonstrates, they merge; as a consequence, a single maximum
occurs when m0 is as large as 8. The magnitude of the single maximum declines with
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Figure 7. The first dispersion curve in the complex frequency plane for m0 = 7. A global
maximum of Re(ω1) on the right-hand segment of the lower branch gets smaller.
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Figure 8. The first dispersion curve in the complex frequency plane for m0 = 8. The global and
local maxima of Re(ω1) on the right-hand segment of the lower branch merge together.

m0 increasing in the fourth range m0 > 7. For this reason, unstable waves with large
values of the crossflow wavenumber amplify slower in time compared to disturbances
from the first three ranges of m0. Amplification in space requires a consideration of
the associated change in group velocities given below.

4.4. Extremal points of Re(ω1)

As is known (see for instance Landau & Lifshitz 1959), positive maxima attained by
the real part of the complex frequency result in the wave-packet formation in any
viscous shear flow. This property was exploited by Ryzhov & Terent’ev (1984, 1986) to
compute the strong amplification of modulated signals in the Blasius boundary layer
on a flat plate. Therefore, let us trace the evolution of the global and local maxima of
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Re(ω1), in relation to the spanwise wavenumber m0, in a three-dimensional boundary
layer with crossflow. Our analysis will be confined to the lower branch of ω1(k) for
it has greater values of Re(ω1) at the extremal points in question compared to the
corresponding values characteristic of the upper branch.

Let maxg[Re(ω1)] and max`[Re(ω1)] be the magnitudes of Re(ω1) evaluated at those
positions where this function takes on, respectively, its global and local maximal values
on the right-hand segment of the lower branch. The magnitude of the positive peak
of Re(ω1) clearly observable in figures 4 and 5 on the left-hand segment is designated
by maxd[Re(ω1)]. Since d Re(ω1)/dk = 0 at the points mentioned we may introduce
the group velocities V ∗g , V ∗` and V ∗d defined through V ∗ = −d Im(ω1)/dk and labelled
with the same subscripts g, ` and d. Variations of maxg[Re(ω1)] with m0 are drawn
in figure 9(a). Maxg[Re(ω1)] is at its highest, Mg = 1.54 at the point m0 = m∗0g = 4.87
where k = k∗g = 2.23. Thus, the two-dimensional case specified by m0 = 0 does not
provide the largest rate of disturbance amplification. With m0 > 6.0, the magnitude
of maxg[Re(ω1)] drops sharply. The group velocity V ∗g is shown in figure 9(b) to be
positive for all m0. Upon reaching a maximum within the interval 0 < m0 < 1, it falls
to a minimum beyond the point m0 = 7 and then begins to increase again. However,
maxg[Re(ω1)] becomes fairly low in this range of the spanwise wavenumber.

The magnitude of max`[Re(ω1)] presented in figure 10(a) also grows above a
value specific to the two-dimensional case with m0 increasing up to the point m0 =
m∗0` = 6.20 where k = k∗` = 3.80. At this point the local maximum of Re(ω1) is at
its highest M` = 0.91, which turns out to be nevertheless below the corresponding
value of maxg[Re(ω1)]. With m0 continuing to increase beyond the point m0 = m∗0`,
max`[Re(ω1)] tends to decline; however the tendency develops slowly. As a result, the
magnitude of max`[Re(ω1)] overtakes the magnitude of maxg[Re(ω1)] diminishing
much faster and both extrema merge together giving rise to a single maximum of
Re(ω1), already known from figure 8. The group velocity V ∗` in figure 10(b) has a
maximum within the interval 1 < m0 < 2, drops to a minimum beyond the point
m0 = 8 and then again shows an increase, remaining positive for all m0.

The behaviour of maxd[Re(ω1)] in figure 11(a) is of our prime concern because this
extremum, like the entire left-hand segments of both branches of ω1(k), are intrinsic
to three-dimensional boundary layers and missing from two-dimensional flows. The
magnitude of maxd[Re(ω1)] monotonically rises from zero with m0 varying over an
interval 0 < m0 < 5.3. However, in the first range, 0 < m0 < 2, considered above
maxd[Re(ω1)] is too small compared to maxg[Re(ω1)] and even to max`[Re(ω1)]
evaluated with the same values of m0. As was emphasized above, in the second
range, 2 < m0 < 5, maxd[Re(ω1)] rapidly builds up and amounts to about one third
of maxg[Re(ω1)] and exceeds one half of max`[Re(ω1)] at m0 = 3. What is more
important, in figure 5 maxd[Re(ω1)] is seen to stand out sharply against the level of
Re(ω1) typical of the adjacent portion of the first dispersion curve. An analogous
topological form of ω1(k) persists at m0 = 3.5. On the other hand, by the end of
the second range the positive peak of Re(ω1) on the left-hand segment of the lower
branch turns into a scarcely perceptible kink (figure 6) and therefore becomes of
almost no significance in determining the disturbance pattern induced by a ribbon.
As figure 11(b) suggests, the group velocity V ∗d associated with the positive peak of
Re(ω1) in question proves to be negative for any m0 from the interval 0 < m0 < 5.3
and becomes zero when m0 = 5.3. With this value of m0, the tiny kink disappears
from the shape of the first dispersion curve. As a consequence V ∗d ceases to exist if
m0 > 5.3.

Except for the points with extremal values of Re(ω1), dω1/dk is complex and
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Figure 9. (a) Magnitude of the global maximum of Re(ω1) and (b) group velocity corresponding
to the global maximum of Re(ω1), on the right-hand segment of the lower branch as a function of
the spanwise wavenumber.

then the imaginary part loses its simple meaning. However, the dispersion relation
for disturbances in a three-dimensional boundary layer has a specific property. As
opposed to positive values of a derivative V = −d Im(ω1)/dk at the points on the
right-hand segment, the same derivative takes on negative values along the entire
left-hand segment of the lower branch starting from zero at a position where the two
segments are connected to make up a single curve. An analogous statement holds
true with regard to the upper branch. When applied to the lower and upper branches,
the condition d Im(ω1)/dk = 0 determines two respective values, k = k(−)

r (m0) and
k = k(+)

r (m0), of the streamwise wavenumber. Hence d Im(ω1)/dk < 0 occurs in a finite
range k(+)

r < k < k(−)
r where Re(ω1) > 0, rather than being valid locally. Thus, we may

expect that both left-hand segments of ω1(k) located in the lower as well as upper
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Figure 10. (a) Magnitude of the local maximum of Re(ω1) and (b) group velocity corresponding
to the local maximum of Re(ω1), on the right-hand segment of the lower branch as a function of
the spanwise wavenumber.

half-planes of the complex ω-plane are capable of contributing to the excitation of
amplifying modulated disturbances in a region upstream of the ribbon. Should this
be the case, the three-dimensional boundary layer would be absolutely unstable in
the streamwise direction.

A rigorous treatment to provide support for this view is usually based on a criterion
stated by Briggs (1964) and Bers (1975) for unstable two-dimensional wave systems in
plasmas. Recently, a pertinent formalism was extended by Brevdo (1991) to the general
three-dimensional case and exploited by Lingwood (1995) when analysing the rotating-
disk flow. Unlike the above discussion confined to real streamwise wavenumbers, the
dispersion relation roots are also traced in the complex k-plane. As applied to the
problem in question, a point k = kp(m0) of zero d Im(ω1)/dk with positive Re(ω1)
is necessary, but in general not sufficient, for streamwise instability to occur. For
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Figure 11. (a) Magnitude of the positive peak of Re(ω1) and (b) group velocity corresponding to
the positive peak of Re(ω1), on the left-hand segment of the lower branch as a function of the
spanwise wavenumber.

this condition to become sufficient, a pinching requirement for two colliding roots of
the dispersion relation has to be met. The essence of the additional constraint is as
follows: the two roots that coalesce at the point k = kp in the complex wavenumber
plane must originate on the opposite sides of the real axis when Re(ω1) takes on
sufficiently large positive values. It is easily seen that the function ω1 = ω1(k) has a
saddle point at k = kp (Brevdo 1991). Evidently neither k(−)

r nor k(+)
r are the saddle

points of ω1(k).
Noteworthy are branch points in the complex k-plane. A function on the right-hand

side of (3.16) gives rise to three of them, K = 0 and k = ±im0/(1−M2
∞)1/2 located on

the real and imaginary axis, respectively. Also, infinite sets of branch points emerge
from the collision of different spatial branches of the dispersion-relation roots. Their
location in the complex auxiliary Ω-plane varies with m0. A branch cut is drawn
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through each of the points mentioned. In order to remain on the same sheet of
a Riemann surface, the branch cuts must be avoided by the colliding roots when
checking the pinching requirement. Due to the cut arising from K = 0 the behaviour
of the spatial branches of the first dispersion curve becomes intricate and strongly
depends on a value of the crossflow wavenumber. This is why the approach under
discussion does not appear worthy of pursuing further.

The method of steepest descent offers an alternative rigorous approach to evaluating
the inverse Laplace–Fourier transform in (3.20) and resolving the issue of absolute
instability. A brief discussion of this technique is postponed until the next Section.

5. Pressure variations
With the dispersion-relation properties at hand, we may proceed to working out

the excess pressure induced by the ribbon. An explicit expression for its shape
f(x) entering (2.9) was of no significance in the general analysis; however in the
computation it is convenient to put f = π−1/2exp(−x2) with a consequence that the
corresponding Fourier transform f̄ = exp(−k2/4). This choice ensures fast decay of
p̄c specified by (3.17) as k → ±∞.

5.1. Asymptotic simplification for large times

Insofar as a continous part is missing from the ω-spectrum let us expand the inverse
Laplace transform entering a relationship for the self-induced pressure pc into series
in residues of the integrand at its poles. Using (3.20) we have

J =

∫ `+i∞

`−i∞

Φ(Ω)eωtdω

(ω2 + ω2
0)[Φ(Ω)− Q(k, m0;M∞, ε2D(zz); τx, τz)]

=
π

ω0

J0 + 2πiJ1, (5.1a)

J0 = eiω0t
Φ(Ω0)

Φ(Ω0)− Q(k, m0;M∞, ε2D(zz); τx, τz)

−e−ω0t
Φ(−Ω0)

Φ(−Ω0)− Q(k, m0;M∞, ε2D(zz); τx, τz)
, (5.1b)

J1 =

∞∑
j=1

1

ω2
j (k) + ω2

0

eωj (k)t
Φ(Ωj)

∂Φ(Ωj)/∂ω
, (5.1c)

where Ω0 = i1/3ω0K
−2/3 and, in keeping with the above abbreviations, ωj(k) =

ωj(k, m0;M∞, ε2D(zz); τx, τz) = i2/3K2/3Ωj(k, m0;M∞, ε2D(zz); τx, τz), j = 1, 2, . . . . The first
term J0 in (5.1a) derives from the two roots (4.1) and is periodic in time. The second
term J1 consists of contributions associated with the roots ωj(k), j = 1, 2, . . . , of the
dispersion relation. As was proved in the preceding Section, only the first root ω1(k)
gives rise to unstable oscillations whereas all the other eigenmodes caused by the roots
ωj(k) with j = 2, 3, . . . , damp out with time both upstream and downstream of the
ribbon. Therefore, in an asymptotic representation for J1 we may confine ourselves
to the leading-order approximation and write

J1 ∼
1

ω2
1(k) + ω2

0

eω1(k)t Φ(Ω1)

∂Φ(Ω1)/∂ω
for large t, (5.2)

in place of (5.1c). It is pertinent to note at this point that the determination of unstable
disturbances and neglect of decaying eigenmodes leaves aside transient dynamics in
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favour of the asymptotic state (for a discussion of a transient stage in the wave-
pattern development see Benny & Gustavsson 1981 and Criminale & Drazin 1990
and references therein).

With the simplifications achieved, the self-induced pressure becomes

pc = pc0 + pc1. (5.3)

In view of (5.1b), the time-periodic part pc0 of oscillations is fixed by

pc0 = − i

4π

∫ ∞
−∞

dkeikx−k2/4
{
k2
[(

1−M2
∞
)
k2 + m2

0

]−1/2
+ ε2m

2
0D(zz)

}
×
[
e−iω0t

Φ(−Ω0)

Φ(−Ω0)− Q(k, m0)
− eiω0t

Φ(Ω0)

Φ(Ω0)− Q(k, m0)

]
(5.4)

with parameters M∞, ε2D(zz); τx, τz omitted when indicating the arguments of Q. On
the strength of (5.2) and a relation dΦ/dΩ = Ai(Ω)[Ω+Φ(Ω)]I−1(Ω), the second term
pc1 in (5.3) that gives the exponentially amplifying disturbances in time and space
can, to leading order, be reduced to

pc1 = − i2/3ω0

2π

∫ ∞
−∞

dkeω1(k)t+ikx−k2/4
{
k2
[(

1−M2
∞
)
k2 + m2

0

]−1/2
+ ε2m

2
0D(zz)

}
× K2/3d Ai(Ω1)/dY

[ω2
1(k) + ω2

0]Ai(Ω1)[Ω1 + Φ(Ω1)]
for large t. (5.5)

Both contributions pc0 and pc1 to the self-induced pressure variations are expressed
through single integrals making the final stage of analysis amenable to treatment with
the steepest descent method. Let us dwell briefly on the main concepts underlying
this standard technique as applied to evaluating exponentially growing disturbances.
The existence of saddle points of the complex phase function ϕ = ω1(k, m0) + iVk,
V = x/t entering the exponent of the integrand in (5.5) is central to the steepest
descent method; their coordinates k = ks(m0; V ) come from

dω1

dk
+ iV = 0.

Here we may put V → 0 in determining the large-time response for any finite x=const
to resolve the issue of streamwise absolute instability. However, our interest is in the
whole wave pattern, both downstream and upstream of the ribbon, rather than in
the behaviour of oscillations in the immediate vicinity of it. A complete set of saddle
points is needed to compute the pressure distribution from (5.5) along an arbitrary
ray x/t = const. It should be recognized that a saddle point k = ks contributes to
instabilities if the original integration path along the real axis can be continuously
deformed into a steepest descent contour through this particular point. The existence
of ks by itself does not imply at all that such a contour is obtainable for any m0

and V . Thus, the properties of the phase function ϕ = ϕ(k, m0; V ) in the entire
complex k-plane should be investigated for feasability of drawing the steepest descent
contour through each saddle point. Notice that in addition to the aforementioned
branch points at K = 0 and k = ±im0/(1−M2

∞)1/2, three sets of branch points result
from the coalescence of ω1 with the other roots ωj , j = 2, 3, . . . , of the dispersion
relation. In the auxiliary complex Ω-plane all the points where any two temporal
branches coalesce are fixed by dΦ/dΩ = 0. For dΦ/dΩ = Ai(Ω)[Ω + Φ(Ω)]I−1(Ω),
their positions are defined either by the real negative zeros of the Airy function or
by the pairs of complex conjugate zeros of a function Ψ = Ω + Φ(Ω). The three sets
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of zeros found in the complex Ω-plane give rise to the corresponding sets of branch
points in the complex k-plane. A branch cut should be drawn through each of these
points. Thus, examining the global topography of the phase function becomes the
most tedious part of the analysis.

A complete study for two-dimensional oscillations with m0 = 0 may be found in
Ryzhov & Terent’ev (1986). Even in this simplest particular case there are two families
of saddle points none of which contributes, in accord with the well-known results, to
streamwise absolute instability. With m0 6= 0 the number of the saddle-point families
increases and strongly depends on a value of the crossflow wavenumber. For instance,
if m0 = 3 five families come into existence only for the phase function based on
the lower branch of the first dispersion curve. However a check upon the feasibility
of absolutely unstable disturbances being excited in the streamwise direction of a
three-dimensional boundary layer requires V = 0. The saddle point of the phase
function specified by this condition becomes simultaneously a saddle point of the
complex frequency. In examples considered below the original integration path in
the Fourier transform (5.5) proves to be continuously deformable into the steepest
descent contour through the saddle point of ω1 = ω1(k, m0). Thus, we are led to the
conclusion that streamwise absolute instability is triggered in response to the initial
motion of the ribbon.

The contributions from pc0 and pc1 were calculated numerically using the FFT
algorithm to speed up the computation with real k. Results and their elucidation
in terms of the dispersion-relation properties are set forth below. They provide
not only the conclusive evidence for streamwise absolute instability but, what is
more important, reveal fundamental mechanisms in different regimes of excitation
depending on the crossflow wavenumber. In most cases periodic oscillations and
rapidly growing wave packets were computed for the same time t = 10. This value was
found to separate wave packets excited during the initial pulse motion of the ribbon
from disturbances continuously fed by its subsequent monochromatic vibrations.

5.2. Periodic oscillations

The distribution of pc0 with distance from the vibrating ribbon strongly depends on
m0. In the particular case m0 = 0, the periodic part under consideration contributes
significantly to pressure variations in the vicinity of the external source where a TS
wave is formed (Terent’ev 1984). At t 6 10, essentially three-dimensional disturbances
with m0 6= 0 are dominated by wave packets developing from a contribution given by
pc1. Under these circumstances periodic oscillations become of less significance.

Critical values m0∗ of the spanwise wavenumber provoking drastic changes in the
pressure distribution are fixed by a requirement that ω0 should coincide with a
frequency ω∗ of neutral oscillations, i.e. Re(ω1) = 0, Im(ω1) = ω∗(m0) = ±ω0. As
figure 3 shows, there are two critical values m0 = m

(1)
0∗ = 1.8 and m0 = m

(2)
0∗ = 3.5

of the spanwise wavenumber which correspond to the prescribed neutral frequency
ω0 = 3. Both critical values are determined by the lower branch of the first dispersion
curve. In accord with the behaviour of ω1 in figures 2 and 4–8, no value of m0∗ comes
from the upper branch of this curve. As a result, there exist three distinctive ranges
of the spanwise wavenumber specified by the following inequalities: Ip, 0 < m0 < 1.8;
IIp, 1.8 < m0 < 3.5; IIIp, m0 > 3.5 provided that ω0 = 3. Clearly, they have nothing
to do with the four characteristic ranges of eigenmodes analysed in §4. The critical
values m(1)

0∗ and m(2)
0∗ separating the ranges of periodic oscillations strongly depend on

the forcing frequency ω0. Besides, it should be kept in mind that Ω0 = i1/3ω0K
−2/3

in the difference Φ(±Ω0) − Q(k, m0) entering the right-hand side of (5.4). When
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Figure 12. Real and imaginary parts of periodic oscillations of the ribbon-induced pressure vs. the
streamwise distance; m0 = 1.2; t = 10.

Φ(±Ω0)−Q(k, m0) passes through zero, the dispersion relation comes into play in the
complex k-plane and can be used to identify the critical values k(1)

∗ and k
(2)
∗ of the

streamwise wavenumber associated with neutral oscillations. The same critical values
m

(1)
0∗ and m

(2)
0∗ of the spanwise wavenumber are readily apparent from the respective

conditions Re(k(1)
∗ ) = 0 and Re(k(2)

∗ ) = 0. Damped eigenmodes fall within two shaded
domains in figure 3; unstable oscillations are represented by the points which lie
outside their boundaries.

A TS wave generated in the particular case m0 = 0 amplifies downstream of the
ribbon vibrating with the frequency ω0 = 3. However in order to evaluate the growth
rate with distance, it is necessary to take into account a contribution from pc1 becoming
dominant in the region x > 0 (Terent’ev 1984). An oscillatory tongue conditioned
by the TS wave radiation arises in the distribution of pc0 with x which decays in
the upstream direction (not shown). The pressure variations of the type intrinsic to
pc0 in the particular case m0 = 0 persist up to the first critical value m

(1)
0∗ = 1.8.

An exception occurs in a narrow interval centred about m0 = 1.2 where oscillations
portrayed in figure 12 develop and fade out in both directions, downstream as well
as upstream of the ribbon. The excitation of an oscillatory tongue in the region x > 0
is easily explainable if allowance is made for the properties of the dispersion relation
in the complex k-plane where two roots become close in magnitude and opposite
in sign. The root k(+)

s in figure 13 stems from (4.1) where ω = iω0 = 3i. This root
is basic to the downstream portion of disturbances, because min[Re(k(+)

s )] = 0.07

achieved at m0 = 1.2 compares in magnitude to the value Re(k(−)
1 ) = −0.04 taken at

the same point by the real part of the first root k(−)
1 which derives from (4.1) with

ω(−) = −iω0 = −3i. However, Re(k(+)
s ) grows very fast beyond the immediate vicinity

of m0 = 1.2; therefore the downstream spreading oscillatory motion does not typify
the first range of the spanwise wavenumbers.

On the other hand, the oscillatory tongue behind the ribbon becomes a distinctive
feature of the disturbance pattern in the second range 1.8 < m0 < 3.5. The compu-
tation reveals no forced time-periodic oscillations in front of the perturbing source
specified by the spanwise wavenumber from this range.

The distribution of pc0 with x drastically changes on passing through the second
critical value m(2)

0∗ = 3.5. The oscillatory tongue behind the ribbon disappears and
instead an upstream spreading tail emerges as a dominant property of the disturbance
pattern. However the oscillatory motion ceases to exist in space, when the spanwise
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wavenumber falls within the third range 3.5 < m0, and very soon gives way to the
disturbance of the type exhibited in figure 14 for m0 = 4 and 4.5. Even smoother
variations of pc0 are typical of larger values of m0. The amplitude of the forced
time-periodic oscillations drops with m0 increasing.

5.3. Downstream-sweeping wave packets with moderate values 0 < m0 < 7

Qualitatively, the wave system generated by switching on the perturbing source may
be outlined even without evaluating the integral on the right-hand side of (5.5).
Conclusions of conceptual significance are easily derivable from the form of the first
dispersion curve in the complex ω-plane which has been elucidated in §4. Since the
limit (4.5) holds for all four ranges of m0 as k →∞ as well as k → −∞, both branches
of this curve situated in the lower and upper half-planes make an equal contribution
to a long oscillatory tongue in front of downstream-moving disturbances. Pulsations
here are given by the application of the Kelvin stationary-phase principle (or the
steepest descent technique) on the condition that x/t � 1. In presenting the final
result we confine ourselves to two-dimensional wave packets with m0 = 0 to give an
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idea of how the excess pressure develops in the most advanced region of oscillations.
In this particular case the leading term of an asymptotic representation reads

pc1 =
2ω0τ

1/2
x

π1/2
(
1−M2

∞
)1/4

exp

(√
2

2
τ3/2
x

(
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∞
)1/4

t−
τ2
x

(
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∞
)

16

x2

t2

)
t1/2

x

× sin

[
τx
(
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)1/2

4

x2

t
+

√
2

2
τ3/2
x

(
1−M2

∞
)1/4

t− π

4

]
. (5.6)

The oscillatory tongue is similar to that studied in Ryzhov & Terent’ev (1984, 1986)
in connection with stability of the Blasius boundary layer. Structurally, the oscillation
tongue is determined by the initial pulse-mode stage of switching on the perturbing

source. The short-scaled wave pattern in (5.6) specified by τx
(
1−M2

∞
)1/2

x2/(4t)
ensues from the superposition of the quasi-two-dimensional TS eigenmodes. As
regards τx and 1 − M2

∞, it obeys the conventional triple-deck normalization not
included in (2.3a, b). The dependence of the most rapidly sweeping part of disturbances
on the spanwise wavenumber makes the pressure distribution far more complicated.
Variations in the crossflow direction are accounted for through a multiplier Re(eim0z)
in (3.3) dictated by the shape (2.9) of the ribbon. Note, however, that the oscillatory
tongue might be strongly affected by the formation of a critical layer at some distance
from the solid surface. This issue is left aside in the present study.

As (5.6) shows, the short-scaled wave motion exponentially amplifies in time at any
point in space. We may thus expect that the pressure distribution given in pc1 becomes
a rapidly growing function of the streamwise coordinate in a transitional-type region
next to the oscillatory tongue. This statement can be readily justified by exploiting
properties of the first dispersion curve in the complex ω-plane. As figure 4 discloses,
the global and local maxima with a local minimum of Re(ω1) in between feature in
the right-hand segments of both the lower and upper branches of this curve in the first
range 0 < m0 < 2 of the spanwise wavenumber. Each maximum gives rise to a wave
packet exponentially growing in time and space. However contributions to pc1 from
the maxima of Re(ω1) are far from being equivalent. The dominant role in exciting
vigorous pulsations is played by the global maximum on the lower branch because
the magnitude of the corresponding maximum on the upper branch is about 1.7 times
less when m0 = 1. Of the same size is the local maximum on the lower branch whereas
an analogous maximum on the upper branch tends to decay. The global maximum of
Re(ω1) on the upper branch provides an essential contribution to pc1 only when m0

is small enough. If we leave aside this nearly two-dimensional regime, the pulsation
pattern consists of the main large-amplitude wave packet moving downstream with
the group velocity V ∗g = V ∗g (m0) presented in figure 9(b) and three subpackets having
their intrinsic group velocities. The subpacket deriving from the local maximum on
the lower branch of the first dispersion curve sweeps faster with the group velocity
V ∗` = V ∗` (m0) depicted in figure 10(b). It is located between the oscillatory tongue (5.6)
and the main wave packet. With reference to Ryzhov & Terent’ev (1984, 1986) we
may anticipate, however, all three weaker subpackets to be indiscernible against the
background of vigorous pulsations in the main wave packet. Figure 15 computed for
m0 = 1 confirms this claim, showing a system of oscillation cycles in the form of a
single highly-modulated disturbance. The group velocity of the disturbance is close
to V ∗g (1) = 4.5 in figure 9(b).

The wave system downstream of the ribbon simplifies in the second range 2 <
m0 < 5 of the spanwise wavenumber. According to figure 5 drawn for a typical value
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Figure 15. Ribbon-induced pressure distributions vs. the streamwise coordinate in the
downstream-sweeping wave packet for m0 = 1; t = 10.

m0 = 3, no subpacket can be associated with the upper branch of the first dispersion
curve insofar as all the extrema of Re(ω1) are missing from its right-hand segment.
The same statement holds true for the third range 5 < m0 < 7 exemplified by the
plots in figures 6 and 7 where the global and local maxima of Re(ω1) feature only the
right-hand segment of the lower branch. Figure 16 exhibits a single highly-modulated
disturbance for a value m0 = 5 separating the second and the third ranges. The
disturbance is actually driven by the global maximum. Contributions to central large-
amplitude cycles from the other parts of the first disperison curve, including the local
maximum of Re(ω1) on its lower branch, are small. At t = 10, the oscillation swing
in the wave system defined by m0 = 5 is about ten times greater than in the wave
packet in figure 15 for m0 = 1. The most rapidly growing disturbances originate in
the computation from the ribbon with 4.5 < m0 < 5. The reason behind the strongest
amplification of the wave packets having values of m0 within this particular interval
of the spanwise wavenumber becomes evident from inspection of figure 9(a) where
maxg[Re(ω1)] is at its highest at m0 = m∗0g = 4.87 and then sharply drops with the
spanwise wavenumber approaching the end-point m0 = 7 of the third interval. The
disturbance in figure 16 sweeps downstream with the group velocity V ∗g (5) = 4.0 being
nearly equal to that in figure 9(b). In the third range of the crossflow wavenumber
the computed group velocity V ∗g = V ∗g (m0) monotonically diminishes to become as
low as V ∗g (7) = 2.6. Figure 9(b) predicts the same behaviour.

5.4. Upstream-advancing wave packets

The existence of highly modulated signals capable of moving against the oncoming
stream is also directly inferable from the form of the first dispersion curve in the
complex ω-plane. As has been elucidated in §4, a small positive peak of Re(ω1) can
develop on the left-hand segment of the lower branch behind the second neutral
point. Figure 4 typifies the first range 0 < m0 < 2 of the spanwise wavenumber.
This peak is strongly magnified in the second range 2 < m0 < 5. Figure 5 gives
evidence for a characteristic case m0 = 3 when maxd[Re(ω1)] amounts to one-third of
the global maximum and exceeds one-half of the local maximum on the right-hand
segment despite the large magnitudes of both maxg[Re(ω1)] and max`[Re(ω1)]. In
fact there is one more tiny peak (or at least scarcely perceptible kink) of Re(ω1) in the
shape of the left-hand segment of the lower branch, but the occurrence of additional
minute extrema does not play any role in building up the overall wave pattern.
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Figure 16. Ribbon-induced pressure distributions vs. the streamwise coordinate in the
downstream-sweeping wave packet for m0 = 5; t = 10.
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upstream-advancing wave packet for m0 = 3; t = 10.

The justification for the above conclusion is that the group velocity V ∗d = V ∗d (m0)
in figure 11(b) associated with the positive peak of Re(ω1) under discussion takes
on negative values for all m0 within the first and the second ranges of the spanwise
wavenumber.

According to the behaviour of the first dispersion curves in figures 6 and 7, the
positive peak of Re(ω1) is missing from the left-hand segments of both branches in
the third range 5 < m0 < 7. This means, in effect, that the upstream-advancing wave
packets of the type considered above cease to be emitted by the pulsed ribbon, even
though the magnitude of maxd[Re(ω1)] continues to increase in figure 11(a) up to
a point m0 = 5.3 where the group velocity vanishes to zero. The contribution from
the scarcely perceptible kink in figure 6 gets insufficient for the generation of the
wave-packet-type disturbances in the upstream direction.

Figure 17 presents the wave system in front of the ribbon obtained in the compu-
tation with m0 = 3. At t = 10, the amplitude of the largest cycle is about 3 × 104

times less than the size of pulsations in the centre of the disturbance sweeping down-
stream. The computed wavenumber k = −0.46 of the largest cycle agrees well with
the corresponding theoretical value k∗d(3) = −0.42. An estimate for the group velocity
leads to a value V ∗d (3) = −3.9 in keeping with that in figure 11(b).

The upstream-propagating signal computed for m0 = 5 is displayed in figure 18.
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Figure 18. Ribbon-induced pressure distributions vs. the streamwise coordinate in the
upstream-advancing wave packet for m0 = 5; t = 10.

Exponentially growing oscillations are clearly seen ahead of the ribbon. They are
induced by monotonic variations of Re(ω1) along the left-hand segments of both
branches making up the first dispersion curve in the complex ω-plane, since there is
no positive peak of Re(ω1) when m0 = 5.3. In line with the above conclusion from
the general analysis, the upstream signal does not take the shape of a separate wave
packet, rather it is inextricably entwined with the vigorous disturbance in figure 16.
This implies, in essence, that the mechanism for triggering the wave system moving
against the oncoming stream drastically changes when passing through a narrow
interval centred about m0 = 5 and new effects come into play in the third range
5 < m0 < 7.

5.5. Wave packets with large values of m0 > 7

When the spanwise wavenumber m0 becomes greater than 7, an alternative mechanism
controls the development of pulsations over and ahead of the ribbon. From the
analysis of the first dispersion curve in the complex ω-plane summarized in figure 8
with m0 = 8 we see the global and local maxima of Re(ω1) on its lower branch to
merge together and form a single smoother maximum whose strength progressively
drops with m0 increasing. The disturbance is mostly driven by a contribution from
this extremum, so it propagates as a whole downstream. However, contributions from
the monotonic variations of Re(ω1) on each side of the extremum can affect the
wave system to a substantial degree. The above consideration within the framework
of the steepest descent method suggests that the disturbance field builds rapidly up
in the vicinity of the perturbing source. The left-hand segment of the lower branch
is responsible for inducing exponentially growing pulsations upsteam of the ribbon.
Note that the left-hand segment of the upper branch also contributes to the generation
of amplifying signals in this region.

Computed results lend credence to our general views. To elucidate the new mech-
anism at the heart of streamwise absolute instability, two successive instants t = 7.5
and t = 10 are chosen in the computation of oscillation patterns for the same value
m0 = 8. Figures 19 and 20 exhibit an indivisible wave packet with rapidly increasing
amplitude of pulsation cycles both downstream and over the ribbon. The tail part of
amplifying disturbances is seen to penetrate the region upstream of the perturbing
source. At t = 10 the amplitude of the wave packet is more than 103 times lower
than the oscillation swing in the downstream-moving wave packet in figure 16. This
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Figure 20. Global ribbon-induced pressure distributions vs. the streamwise coordinate for the
same value m0 = 8 as in figure 19 and a later time t = 10.

difference derives from the fact that the size of the single maximum of Re(ω1) on
the lower branch of the first dispersion curve falls off in the fourth range m0 > 7
under consideration. At the same time the disturbance propagation speed increases
and amounts to a value 5.8 which is yet less compared to the corresponding value
V ∗` (8) = 6.7 of the group velocity from the plot in figure 10(b). Another distinguished
feature of the disturbance in question is in the length of oscillation cycles. It mono-
tonically increases from the front part of the wave system preceded by the oscillatory
tongue towards the tail, penetrating a domain ahead of the ribbon. Long-wavelength
cycles of the tail are associated with the spreading of the disturbance which is sus-
tained by a contribution from the monotonic variations of Re(ω1) along the left-hand
segments of the first dispersion curve.

6. Discussion and conclusions
The wave packets sweeping downstream in figures 15 and 16 illustrate the de-

velopment of convective instability in boundary layers. This type of disturbance
amplification is well known to be fundamental to conventional routes to transition
in two-dimensional shear flows. Notice, however, that highly modulated signals can
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grow 103–104 times not far from the source of their excitation. This property makes
them dissimilar to the harmonic wavetrains exploited as a rule in wind-tunnel tests.
The latter disturbances require a much longer distance to be enhanced to the same
amplitude unless they are chosen to be the most amplified.

On the other hand, figures 17 and 18 introduce wave packets advancing against
the oncoming steam. We emphasize that the wave packet in figure 17 belongs among
the most violently developing upstream disturbances. These signals can result in the
flow field breakdown ahead of the pulsed ribbon. In other words, they are responsible
for streamwise absolute instabilty of boundary layers. So far, this type of instability
has not been reported in experiments with swept-wing flows. This concept sheds new
light on boundary-layer physics.

The first evidence for the existence of absolutely unstable oscillations in related
rotating-disk environments came recently to light in Lingwood (1995, 1996). As
has been mentioned previously she advanced, using the pinching criterion from the
work of Briggs (1964) and Bers (1975) on plasma physics, theoretical arguments
establishing the concept of absolute instability and then substantiated her analysis by
direct measurements. Apparently, the axial structure of the excited velocity field in
the experimental study by Lingwood (1996) was of the type shown in figures 19 and
20 where the disturbance appears in the form of a single wave packet. The position
where the trailing edge of the wave packet comes to rest on the disk is identified
with the onset of transition. However, there is a significant distinction between the
rotating-disk flow examined by Lingwood (1995) and the swept-wing boundary layer
considered in the context of the receptivity problem (2.9), (2.10a, b), despite a good
consensus of opinion that the former can serve as a model for the latter. It seems
quite reasonable to provide, after Lingwood (1995), the initial perturbation by an
impulsive circumferential line forcing. This forcing is aligned with the mainflow in
a frame of reference rotating with the disk. The group velocity of an excited wave
packet and crossflow are both in the radial direction. The rotating-disk boundary
layer breaks down when the absolutely unstable disturbances propagating through
crossflow stop at some distance from the centre of the disk. On the other hand, the
receptivity problem (2.9), (2.10a, b) where the initial perturbation derives from the
ribbon aligned with crossflow may be regarded as typical of the swept-wing boundary
layer. Under these circumstances the group-velocity vector becomes parallel to the
direction of the local outer stream. However the formulation in (2.9), (2.10a, b) involves
the important limitation that the arising disturbances vary periodically in z, whereas
from a point source they are free to convect in the crossflow direction. Therefore,
the receptivity problem posed is indicative only of streamwise absolute instability
rather than being capable of resolving the issue of absolute instability in the strict
sense. As a consequence, the absolute instability evolves in the streamwise motion of
a fluid due to upstream-penetrating oscillations. Recent results of Lingwood (1977)
and Taylor & Peake (1998) published when the present paper was in the process of
being reviewed shed light on the general problem. Using a finite-Reynolds-number
approach which is based upon the pinching criterion as applied to solutions of the
Orr–Sommerfeld equation, the authors of both papers argue that disturbances from
a point source can be at rest in any direction falling within a certain range of
flow angles since the corresponding component of the group velocity decays to zero.
The other component of the group velocity in the same frame of reference takes
a finite value, thereby determining the direction and speed of the disturbance drift.
Thus, the three-dimensional boundary layer is prone to absolute instability only in
one of two orthogonal directions, but not in both directions simultaneously. Different
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mechanisms governing the development of self-excited oscillations do not come within
the province of the consideration in Lingwood (1997) and Taylor & Peake (1998).

From the pure mathematical point of view, a multiplier K−5/3 entering the ex-
pression (3.16) on the right-hand side of the dispersion relation (4.2) lies at the
heart of streamwise absolute instability in a three-dimensional boundary layer. The
very existence of the reduced wavenumber K = kτx + m0τz comes from the fact
that the direction of the velocity vector across the boundary layer does not coin-
cide with the direction of the local external stream. It is just the denominator of
Q(k, m0;M∞, ε2D(zz); τx, τz) which causes the first dispersion curve in the complex ω-
plane to split into two separate, lower and upper, branches each of which consists
of two different segments merging together as shown in figure 2 for m0 = 0.1. The
left-hand segments are missing from the shape of the first dispersion curve in the
particular case of two-dimensional disturbances with m0 = 0 and K = kτx. Both right-
hand segments carry positive values of V = −d Im(ω1)/dk whilst the same derivative
has negative values along both left-hand segments. We have V = 0 at those points
where the two segments are connected to make up a single branch. Therefore, the two
right-hand segments trigger convective instability well known from numerous studies
on two-dimensional boundary layers. On the other hand, the two left-hand segments
are associated with absolutely unstable disturbances capable of advancing upstream
from the periodically shaped ribbon. The disturbances of this kind are inherent only
in three-dimensional flows where coupling of travelling waves with crossflow vortices
is a dominant feature controlling their amplification and determining the path to
transition.

We may treat both left-hand segments as making up a specific viscous eigenmode
in the complex ω-plane which falls outside the scope of the analysis in Lingwood
(1997) and Taylor & Peake (1998). It is vital to note that the mode involves passing
to the limit K → 0. The wave fronts propagate in the direction normal to the wall
shear stress in this limit. However, in view of (4.4) the formation of a critical layer
at some distance from a solid surface should be taken into account when K → 0.
Apparently, an analogous but spatially damped inviscid mode has been indicated
by Mack (1985) and Balakumar & Malik (1990) in connection with the rotating-
disk boundary layer. The new mode briefly mentioned by them is central to the
analysis in Lingwood (1995). The behaviour of the eigenmode comprising both left-
hand segments of the first dispersion curve becomes intricate in the complex k-plane
because it has branch-point singularities and cuts.

A few remarks are due now to demonstrate broad consistency between the triple-
deck theory and experimental findings, accounting at the same time for the lack of
direct observations on absolutely unstable disturbances in the streamwise direction.
The work of Nitschke-Kowsky & Bippes (1988), Bippes et al. (1991), Deyhle et al.
(1993) and Deyhle & Bippes (1996) provides firm evidence that the measured frequen-
cies, wavelength and phase velocities fall within the range of the TS eigenmodes. Our
general consideration in §§2 and 3 is based on a related high Reynolds number as-
sumption leading to the special scalings in (2.3a–c) and (2.4a–c). Thus, the asymptotic
approach under examination is in line with this part of the experimental data. The
amplitude growth rates and group velocities are reported by Bippes et al. (1991) and
Deyhle et al. (1993) to strongly deviate from those predicted by linear stability theory.
However, this inconsistency between the two sets of observable physical quantities
defining the wave system development in a three-dimensional boundary layer seems
to be less surprising if we make allowance for the fact that the concept of streamwise
absolute instability has been completely ignored so far. The amplification rates and
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group velocities can be adequately treated only in the context of this notion in view
of their extreme sensitivity to wind-tunnel test conditions. For the same reason, even
the position where the crossflow vortex modes are induced strongly depends on minor
scratches or dust particles on the wing surface. Careful measurements by Radeztsky
et al. (1993) show similar effects with artificial micron-sized roughness elements placed
near the attachment line. For a broader exposition of experimental data see Reed &
Saric (1989), Deyhle & Bippes (1996) and Reed et al. (1996).

As we have seen, the shape of the left-hand segments of the first dispersion curve
can vary depending on the value m0 of the spanwise wavenumber prescribed by the
ribbon (2.9). A small positive peak of Re(ω1) starts developing in the first range
0 < m0 < 2 on the left-hand segment of the lower branch. In the second range
2 < m0 < 5 this peak amplifies to a substantial magnitude inducing the most rapidly
growing wave packets upstream of the pulsed ribbon. Figure 17 gives a good idea of
the disturbances in question. However, upon passing to the third range 5 < m0 < 7
the positive peak of Re(ω1) starts declining and completely vanishes in the fourth
range m0 > 7. Weaker oscillations of the type portrayed in figures 19 and 20 are
driven by continuous contributions from the monotonic variations of Re(ω1) along
the left-hand segment of the lower branch. The strong dependence of the amplitude
growth rate on the spanwise wavenumber brings into being a selectivity mechanism
for disturbances developing under natural conditions. The most vigorously enhancing
wave patterns with 2 < m0 < 5 would be expected to dominate both in flight and
wind-tunnel tests.

Experimental data available are consistent with this prediction. Surface-visualization
techniques and hot-wire measurements reveal, as a rule, regularly spaced streaks which
are aligned approximately with the mainflow direction. Let λ∗x and δ∗ designate, re-
spectively, the spanwise wavelength and the physical boundary-layer thickness in
initial dimensional variables. According to Reed & Saric (1989), the ratio λ∗z/δ

∗ may
be considered as a constant, nearly equal to 4, for the swept-wing boundary layer.
Starting from (2.3b) we have

∆z∗

δ∗
∼ π

m0

ε−1, ε = R−1/8. (6.1)

The estimate in (6.1) is close to the above experimental value provided that 2 < m0 < 5.
The next question we address in connection with flight/wind-tunnel observations

is how the disturbance moving against the oncoming stream can induce a streaky
pattern fixed in space. In order to shed light on this issue let us evaluate the wave
system at the front edge of the signal, no matter what the spanwise wavenumber
m0. Since the limit (4.6) holds for all four ranges of m0, as K → ±0, both left-hand
segments of the first dispersion curve in the complex ω-plane contribute equally to
amplification of the excess-pressure field. It is easily obtainable by using the Kelvin
stationary-phase principle on condition that (−x)/t� 1. As a result we have

p1 = − ω0

(2π)1/2

τ
1/4
x B

3/4
0(

k2
lim + m2

0

)1/4
e−m

2
0τ

2
z/(4τ

2
x)t3/4(−x)−5/4 cos

[
m0

τx
(τzx− τxz)

]
, (6.2a)

B0 =
k2
lim[(

1−M2
∞
)
k2
lim + m2

0

]1/2 + ε2m
2
0D(zz), (6.2b)

where klim = −m0τz/τx. Clearly, this is a standing wave with the amplitude alge-
braically growing in time and decaying with the upstream distance from the pulsed
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ribbon. The streaks in (6.2a) are πτx/m0 apart and extend in the direction of the
wall shear stress rather than being aligned with the velocity of the oncoming stream.
On the strength of (6.2b), B0 → 0 if m0 → 0, that is, upstream propagation vanishes
when the disturbance field becomes two-dimensional. In the opposite limit B0 → ∞
as m0 → ∞, however, a multiplier exp

[
−m2

0τ
2
z/
(
4τ2

x

)]
damps out amplification of

harmonics with large crossflow wavenumbers. A value of m0 is likely to be forced
through the selectivity mechanism discussed earlier.

The results set forth above are in sharp contrast to the disturbance propagation
in the two-dimensional boundary layer on a flat plate, where the onset of transition
happens suddenly but the location is nevertheless highly dependent on a particular
flight/wind-tunnel environment. The linear stage of the TS wave amplification in
the Blasius flow is mild and extends over a few hundred wavelengths downstream
of a ribbon generating small-amplitude periodic oscillations. The TS stage shortens
to several tenths of a wavelength with the ribbon operating in the pulsed mode. In
general, introducing artificial disturbances into the two-dimensional boundary layer
drastically changes the location of transition. The process is driven by convectively
unstable disturbances which sweep downstream of a region where they were excited.
The routes to transition in the three-dimensional boundary layer on a swept wing
are completely dissimilar, for strong nonlinear interactions become dominant from
near a chordwise position where the disturbances grew to experimentally measurable
size (Bippes et al. 1991; Deyhle & Bippes 1996; Reed et al. 1996). For this reason
the transition location is even more difficult to accurately determine in wind-tunnel
tests with three-dimensional flow than with two-dimensional flow. The streamwise
absolute instability can start from any external source to terminate in the same final
state, governed by nonlinear effects, and make it insensitive to the exact form of the
disturbance sources.

This scenario is inherent in a clean environment of carefully conducted experiments
with fairly weak artificial disturbances. The boundary-layer breakdown is caused
by primary absolutely unstable waves associated with the mean velocity profiles.
Although the mean velocity profiles can have an inflection, high frequencies due to
an inviscid secondary instabilty are not recorded under these circumstances in the
rotating-disk boundary layer (Corke & Knasiak 1996; Lingwood 1996). If, however,
the strength of external sources gets large enough, the secondary instabilities of
the modulated base flow seem to play an important part in the onset of transition.
Accordingly, the dominant mode in the wind-tunnel tests by Bippes et al. (1991) with a
swept-wing flow could be switched from stationary to travelling when the free-stream
turbulence level increased. Time series from Wilkinson & Malik (1985) clearly show
secondary instabilities in the rotating-disk flow. In environments dominated by large-
sized natural disturbances (free-stream turbulence patches for example) nonlinear
interactions are likely coupled with the mechanism of streamwise absolute instability.
A similar coupling is likely to provide an explanation for why transition in the Blasius
boundary layer happens so suddenly within a short distance after the long gradual
enhancement of the predominantly two-dimensional TS waves. As is well known,
three-dimensionality becomes an intrinsic feature of laminar disturbances entering an
essentially nonlinear stage of their development, at the threshold of breakdown.

For these reasons it is very difficult to study in wind-tunnel tests the linear range
of amplification under natural conditions of transition characteristic of the boundary
layer on a swept wing. Some attempts have been made to artificially stimulate the
onset of three-dimensional instabilities. However, to date it has been possible to excite
only the stationary vortices from roughness elements in a repeatable manner. Only
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recently the travelling modes were experimentally observed to be more amplifying
than the stationary modes as expected from hydrodynamic stability theory (Deyhle
& Bippes 1996). Nevertheless, the growth of both modes is still overpredicted. Direct
observations of absolutely unstable wave packets in the streamwise direction seem to
be beyond the realm of the techniques available at present. Therefore, the measurement
of group velocities offers probably the most promising way to accomplish this goal.
As mentioned, significant differences in computed and measured directions ranging up
to 30–40◦ have been reported by Deyhle et al. (1993). But the feasibility of streamwise
absolute instability occurring was not taken into account in those computations at all.
Once the discrepancy between theoretically predicted directions of the group velocity
and the corresponding experimental data has been diminished, the growth rates of
both stationary vortices and unsteady modes may be found to be in much closer
agreement.
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